DOI QR코드

DOI QR Code

On Zeros of Polynomials with Restricted Coefficients

RASOOL, TAWHEEDA;AHMAD, IRSHAD;LIMAN, AB

  • Received : 2013.05.21
  • Accepted : 2013.08.07
  • Published : 2015.12.23

Abstract

Let $P(z)={\limits\sum_{j=0}^{n}}a_jz^j$ be a polynomial of degree n and Re $a_j={\alpha}_j$, Im $a_j=B_j$. In this paper, we have obtained a zero-free region for polynomials in terms of ${\alpha}_j$ and ${\beta}_j$ and also obtain the bound for number of zeros that can lie in a prescribed region.

Keywords

Ploynomials;Zeros;$Enestr{\ddot{o}}om$-Kakeya theroem

References

  1. G. Enestrom, Remarquee sur un Theorem relative aux racinnes de I'equation $a_{n}z^{n}+a_{n-1}z^{n-1}+...a_{1}+a_{0}$ ou to us les coefficients sonts reels et possitifs, Tohoku Math. J., 18(1920), 34-36.
  2. M. Marden, The Geometry of polynomials, Amer. Math. Monthly, 83(10)(1997), 788-797.
  3. Q. G. Mohammad, On the zeros of the polynomials, Amer. Math. Monthly, 72(6)(1965), 631-633. https://doi.org/10.2307/2313853
  4. S. Kakeya, On the limits of the roots of an algebraic equation with positive coefficients, Tohoku Math. J., 2(1912-13), 140-142.
  5. E. C. Titchmarsh, The theory of functions, 2nd ed. Oxford Univ. Press, London, (1939).