Nearly k-th Partial Ternary Quadratic *-Derivations


  • Received : 2015.01.22
  • Accepted : 2015.05.27
  • Published : 2015.12.23


The Hyers-Ulam-Rassias stability of the k-th partial ternary quadratic derivations is investigated in non-Archimedean Banach ternary algebras and non-Archimedean $C^*$-ternary algebras by using the fixed point theorem.


Partial ternary quadratic derivation;non-Archimedean ternary algebra;Hyers-Ulam-Rassias stability;fixed point alternative;non-Archimedean $C^*$-ternary algebra


  1. L. Cadariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal Pure Appl. Math., 4(1)(2003), 1-7.
  2. L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber., 346(2004), 43-52.
  3. Y. Cho, R. Saadati and J. Vahidi, Approximation of homomorphisms and derivations on non-Archimedean Lie $C^*$-algebras via fixed point method, Discrete Dynamics in Nature and Society 2012, Article ID373904(2012), 1-9.
  4. P. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, Hong Kong, Singapore and London, 2002.
  5. J. B. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on the generalized complete metric space, Bull. Amer. Math. Soc., 126(1968), 305-309.
  6. M. Eshaghi, M. B. Savadkouhi, M. Bidkham, C. Park and J. R. Lee, Nearly partial derivations on Banach ternary algebras, J. Math. Stat., 6(4)(2010), 454-461.
  7. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. and Appl., 184(1994), 431-436.
  8. D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U. S. A., 27(1941), 222-224.
  9. D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998.
  10. A. Javadian, M. E. Gordji and M. B. Savadkouhi, Approximately partial ternary quadratic derivations on Banach ternary algebras, J. Nonlinear Sci. Appl., 4(1)(2011), 60-69.
  11. T. Miura, G. Hirasawa and S.-E. Takahasi, A perturbation of ring derivations on Banach algebras, J. Math. Anal. Appl., 319(2006), 522-530.
  12. A. K. Mirmostafaee, Hyers-Ulam stability of cubic mappings in non-Archimedean normed spaces, Kyungpook Math. J., 50(2010), 315-327.
  13. M. Mirzavaziri and M. S. Moslehian, A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc., 37(2006), 361-376.
  14. M. S. Moslehian, Hyers-Ulam-Rassias stability of generalized derivations, Int. J. Math. Sci., Article ID 93942(2006), 1-8.
  15. A. Najati and M. B. Moghimi, Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl., 337(2008), 399-415.
  16. A. Najati and C. Park, Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras associated to the Pexiderized Cauchy functional equation, J. Math. Anal. Appl., 335(2007), 763-778.
  17. C. Park, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl., 275(2002), 711-720.
  18. C. Park, On an approximate automorphism on a $C^*$-algebra, Proc. Amer. Math. Soc., 132(2004), 1739-1745.
  19. C. Park and J. M. Rassias, Stability of the Jensen type functional equation in $C^*$-algebras: a fixed point approach, Abstr. Appl. Anal., 2009, Article ID 360432(2009), 1-17.
  20. C. Park and T. M. Rassias, Homomorphisms in $C^*$-ternary algebras and $JB^*$-triples, J. Math. Anal. Appl., 337(2008), 13-20.
  21. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 297-300.
  22. Th. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers Co., Dordrecht, Boston, London, 2003.
  23. P. Semrl, The functional equation of multiplicative derivation is superstable on standard operator algebras, Integ. Equ. Oper. Theory, 18(1994), 118-122.
  24. S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Science ed., Wiley, New York, 1940.