The Existence of Fixed Points for Generalized Weak Contractions




  • 투고 : 2014.12.04
  • 심사 : 2015.11.03
  • 발행 : 2015.12.23


In this paper, we study the existence and uniqueness of fixed points for generalized weak contractions under some proper assumptions. Our theorems include the known results of [1]-[6].


Complete metric space;weak contraction;fixed point


  1. Ya. I. Alber and S. Guerre-Delabriere, Principles of weakly contractive maps in Hilbert spaces, In: I. Gohberg, Yu. Lyubich (Eds.), New Results in Operator Theory, in: Advances and Appl., 98(1997), 7-22.
  2. B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal., 47(4)(2001), 2683-2693.
  3. D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc., 20(2)(1969), 458-464.
  4. P. N. Dutta and Binayak S. Choudhury, A Generalisation of Contraction Principle in Metric Spaces, Fixed Point Theory Appl., (2008), ID 406368, 8 pages doi:10.1155/2008/406368.
  5. Q. N. Zhang and Y. S. Song, fixed point theory for generalized $\varphi$-weak contractions, Appl. Math. Lett., 22(1)(2009), 75-78.
  6. D. Doric, Common fixed point for generalized (${\psi},{\varphi}$)-weak contractions, Appl. Math. Lett., 22(12)(2009), 1896-1900.
  7. A. D. Arvanitakis, A proof of the generalized Banach contraction conjecture, Proc. Amer. Math. Soc., 131(12)(2003), 3647-3656.
  8. S. V. R. Naidu, Some fixed point theorems in metric spaces by altering distances, Czech. Math. J., 53(1)(2003), 205-212.
  9. K. P. R. Sastry and G. V. R. Babu, Some fixed point theorems by altering distances between the points, Indian J. Pure Appl. Math., 30(6)(1999), 641-647.
  10. K. P. R. Sastry, S. V. R. Naidu, G. V. R. Babu and G. A. Naidu, Generalization of common fixed point theorems for weakly commuting map by altering distances, Tamkang J. Math., 31(3)(2000), 243-250.


연구 과제 주관 기관 : Natural Science Foundation of Hebei Province