대안적 인지 이론으로서 '자원 기반 관점'에 대한 이론적 고찰과 시험 적용

A Theoretical Review and Trial Application of the 'Resources-Based View' (RBV) as an Alternative Cognitive Theory

  • 투고 : 2015.11.03
  • 심사 : 2015.12.28
  • 발행 : 2015.12.31


본 연구의 목적은 두 가지였다. 첫째는 대안적인 인지 이론으로서 D. Hammer와 그의 동료들이 발전시켜 온 '자원 기반의 관점(RBV)'을 이론적으로 고찰하는 것이고, 둘째는 그것을 대학생들이 계절 변화에 관한 모델을 구성하는 학습 활동을 해석하는 데 적용하여 이론의 유용성을 예시적으로 보이는 것이었다. 이론적인 고찰은 관련 문헌을 탐색하여 이루어졌으며, 그 결과를 세 가지 유형의 자원들-개념적, 인식론적, 실천적 자원-을 중심으로 정리하였다. 시험 적용을 통해 과학 모델은 하나의 전체로서 제안되기보다 참여자들에게서 활성화된 여러 가지 자원들이 결합하는 과정을 통해 구성된다는 것을 알 수 있었다. 하지만 활성화된 자원들이 모두 모델에 포함되는 것은 아니었으며, 어떤 개념적 자원들은 과학적인 모델을 구성하는 데 제한점으로 작용하기도 하였다. 과학 교육자들은 학생들이 가지고 있는 자원들에 주의를 기울이고 그에 반응적이어야 하며, 학생들이 자신의 자원을 생산적으로 활용하여 과학을 배울 수 있도록 도와야 한다는 것을 시사점으로 제안하였다.


연구 과제 주관 기관 : 한국연구재단


  1. Atwood, R. K., & Atwood, V. A. (1996). Preservice elementary teachers' conceptions of the causes of seasons. Journal of Research in Science Teaching, 33(5), 553-563.<553::AID-TEA6>3.0.CO;2-Q
  2. Berland, L. K., Schwarz, C. V., Krist, C., Kenyon, L., Lo, A. S., & Reiser, B. J. (in press). Epistemologies in practice: Making scientific practices meaningful for students. Journal of Research in Science Teaching. Advance online publication doi: 10.1002/tea.21257.
  3. Berliner, D. C. (2002). Educational research: The hardest science of all. Educational Researcher, 31(8), 18-20.
  4. Brewer, W. F., & Samarapungavan, A. (1991). Children's theories vs. scientific theories: Differences in reasoning or differences in knowledge. In R. R. Hoffman & D. S. Palermo (Eds.), Cognition and the symbolic processes: Applied and ecological perspectives (pp. 209-232). Hillsdale, NJ: Lawrence Erlbaum Associates.
  5. Chae, D.-H. (1992). Students' naïve theories about change in seasons. Journal of the Korean Earth Science Society, 13(3), 283-289.
  6. Chinn, C. A., Buckland, L. A., & Samarapungavan, A. (2011). Expanding the dimensions of epistemic cognition: Arguments from philosophy and psychology. Educational Psychologist, 46(3), 141-167.
  7. Clement, J., Brown, D., & Zietsman, A. (1989). Not all preconceptions are misconceptions: Finding anchoring conceptions for grounding instruction on students' intuitions. International Journal of Science Education, 11(5), 554-565.
  8. diSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10(2&3), 105-225.
  9. diSessa, A. A. (2013). A bird's-eye view of the "pieces"vs. "coherence" controversy (from the "pieces"side of the fence). In S. Vosniadou (Ed.), International handbook of research on conceptual change (2nd ed., pp. 31-48). New York: Routledge.
  10. Driver, R., & Oldham, V. (1986). A constructivist approach to curriculum development in science. Studies in Science Education, 13, 105-122.
  11. Elby, A,. & Hammer, D. (2010). Epistemological resources and framing: A cognitive framework for helping teachers interpret and respond to their students' epistemologies. In L. D. Bendixen & F. C. Feucht (Eds.), Personal epistemology in the classroom: Theory, research, and implications for practice (pp. 409-434). Cambridge: Cambridge University Press.
  12. Ford, M. (2008). 'Grasp of practice' as a reasoning resource for inquiry and nature of science understanding. Science & Education, 17, 147-177.
  13. Ford, M. (2012). A dialogic account of sense-making in scientific argumentation and reasoning. Cognition and Instruction, 30(3), 207-245.
  14. Hammer, D. (1996). More than misconceptions: Multiple perspectives on student knowledge and reasoning, and an appropriate role for education research. American Journal of Physics, 64(10), 1316-1325.
  15. Hammer, D. (2000). Student resources for learning introductory physics. Physics Education Research, American Journal of Physics, 68(Suppl. 7), S52-S59.
  16. Hammer, D. (2004a). The variability of student reasoning, lecture 1: Case studies of children's inquiries. In E. Redish & M. Vicentini (Eds.), Proceedings of the Enrico Fermi Summer School, Course CLVI (pp. 279-299). Bologna: Italian Physical Society.
  17. Hammer, D. (2004b). The variability of student reasoning, lecture 2: Transitions. In E. Redish & M. Vicentini (Eds.), Proceedings of the Enrico Fermi Summer School, Course CLVI (pp. 301-319). Bologna: Italian Physical Society.
  18. Hammer, D. (2004c). The variability of student reasoning, lecture 3: Manifold cognitive resources. In E. Redish & M. Vicentini (Eds.), Proceedings of the Enrico Fermi Summer School, Course CLVI (pp. 321-340). Bologna: Italian Physical Society.
  19. Hammer, D., & Elby, A. (2002). On the form of a personal epistemology. In B. K. Hofer & P. R. Pintrich (Eds.), Personal epistemology: The psychology of beliefs about knowledge and knowing (pp. 169-190). Mahwah, NJ: Erlbaum.
  20. Hammer, D., Elby, A., Scherr, R. E., & Redish, E. F. (2005). Resources, framing, and transfer. In J. Mestre (Ed.), Transfer of learning from a modern multidisciplinary perspective (pp. 89-120). Greenwich, CT: Information Age Publishing.
  21. Hammer, D., Goldberg, F., & Fargason, S. (2012). Responsive teaching and the beginnings of energy in a third grade classroom. Review of Science, Mathematics and ICT Education, 6(1), 51-72.
  22. Hammer, D., Russ, R., Mikeska, J., & Scherr, R. (2008). Identifying inquiry and conceptualizing students' abilities. In R. A. Duschl & R. E. Grandy (Eds.), Teaching scientific inquiry: Recommendations for research and implementation (pp. 138-156). Rotterdam, The Netherlands: Sense Publishers.
  23. Hammer, D., & Sikorski, T.-R. (2015). Implications of complexity for research on learning progressions. Science Education, 99(3), 424-431.
  24. Hewson, P. W., & Hewson, M. G. A. (1984). The role of conceptual conflict in conceptual change and the design of science instruction. Instructional Science, 13, 1-13.
  25. Hodson, D. (1996). Laboratory work as scientific method: Three decades of confusion and distortion. Journal of Curriculum Studies, 28(2), 115-135.
  26. Hofer, B. K. (2001). Personal epistemology research: Implications for learning and teaching. Journal of Educational Psychology Review, 13(4), 353-383.
  27. Kikas, E. (1998). The impact of teaching on students' definitions and explanations of astronomical phenomena. Learning and Instruction, 8(5), 439-454.
  28. Kitchener, R. F. (2002). Folk epistemology: An introduction. New Ideas in Psychology, 20, 89-105.
  29. Kittleson, J. M. (2012). Epistemological beliefs of third-grade students in an investigation-rich classroom. Science Education, 95, 1026-1048.
  30. Lidar, M., Lundqvist, E., & ostman, L. (2006). Teaching and learning in the science classroom: The interplay between teachers' epistemological moves and students' practical epistemology. Science Education, 90, 148-163.
  31. Lee, H. (2007). A research on the necessities and methods of criticism of classroom instruction. Anthropology of Education, 10(1), 155-185.
  32. Lee, S.-K. (2015). Conceptual change in learning science. Seoul: SNU press.
  33. Levin, D. M., Hammer, D., & Coffey, J. E. (2009). Novice teachers' attention to student thinking. Journal of Teacher Education, 60(2), 142-154.
  34. Louca, L., Elby, A., Hammer, D., & Kagey, T. (2004). Epistemological resources: Applying a new epistemological framework to science instruction. Educational Psychologist, 39(1), 57-68.
  35. Manz, E. (2015). Resistance and the development of scientific practice: Designing the mangle into science instruction. Cognition and Instruction, 33(2), 89-124.
  36. Maskiewicz, A. C., & Winters, V. A. (2012). Understanding the co-construction of inquiry practices: A case study of a responsive teaching environment. Journal of Research in Science Teaching, 49(4), 429-464.
  37. May, D. B., Hammer, D., & Roy, P. (2006). Children's analogical reasoning in a third-grade science discussion. Science Education, 90, 316-330.
  38. Millar, R., & Driver, R. (1987). Beyond processes. Studies in Science Education, 14, 33-62.
  39. Minstrell, J. (1982). Explaining the 'at rest' condition of an object. Physics Teacher, 20, 10-20.
  40. Oh, P. S. (2013). Secondary science teachers' thoughts on 'good' science teaching. Journal of the Korean Association for Science Education, 33(2), 405-424.
  41. Oh, P. S. (2014). Characteristics of teacher learning and changes in teachers' epistemic beliefs within a learning community of elementary science teachers. Elementary Science Education, 33(4), 683-699.
  42. Ogan-Bekiroglu, F., & Akkoc, H. (2009). Preservice teachers' instructional beliefs and examination of consistency between beliefs and practices. International Journal of Science and Mathematics Education, 7, 1173-1199.
  43. Parnafes, O. (2012). Developing explanations and developing understanding: Students explains the phases of the moon using visual representations. Cognition and Instruction, 30(4), 359-403.
  44. Rosebery, A. S., Ogonowski, M., DiSchino, M., & Warren, B. (2010). "The coat traps all your body heat":Heterogeneity as fundamental to learning. The Journal of the Learning Sciences, 19, 322-357.
  45. Rosenberg, S., Hammer, D., & Phelan, J. (2008). Multiple epistemological coherences in an eighth-grade discussion of the rock cycle. The Journal of the Learning Sciences, 15(2). 261-292.
  46. Sandoval, W. A., & Millwood, K. A. (2008). What can argumentation tell us about epistemology. In S. Erduran & M. P. Jimenez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 71-88). Dordrecht, The Netherlands: Springer.
  47. Sandoval, W. A., & Morrison, K. (2003). High school students' ideas about theories and theory change after a biological inquiry unit. Journal of Research in Science Teaching, 40(4), 369-392.
  48. Smith, J. P., diSessa, A. A., & Roschelle, J. (1993/1994). Misconceptions reconsidered: A constructivist analysis of knowledge in transition. The Journal of the Learning Sciences, 3(2), 115-163.
  49. Suh, K.-W. (2013). A lesson, how we see: Looking for children's eyes. Paju: Kyoyookbook.
  50. Songer, N. B., Lee, H.-S., & McDonald, S. (2003). Research towards an expanded understanding of inquiry science beyond one idealized standard. Science Education, 87, 490-516.
  51. Tang, X., Coffey, J., Elby, A., Levin, D. (2010). The scientific method and scientific inquiry: Tensions in teaching and learning. Science Education, 94, 29-47.
  52. The Ministry of Education (2011). Science 6-1: Teacher guide. Seoul: Author.
  53. Tobin, K., & McRobbie, C. (1997). Beliefs about the nature of science and the enacted science curriculum. Science & Education, 6, 355-371.
  54. Warren, B., Ballenger, C., Ogonowski, M., Rosebery, A. S., & Hudicourt-Barnes, J. (2001). Rethinking diversity in learning science: The logic of everyday sense-making. Journal of Research in Science Teaching, 38(5), 529-552.

피인용 문헌

  1. Effects of Modeling-Based Science Inquiry Instruction on Elementary Students' Learning in the Unit of Seasonal Changes vol.35, pp.2, 2016,