Analysis of Radar Cross Section for Naval Vessels with Metamaterials and Radar Absorbing Materials

메타물질 및 전파흡수체를 적용한 함정의 레이다 반사면적 해석

Hwang, Joon-Tae;Hong, Suk-Yoon;Kwon, Hyun-Wung;Kim, Jong-Chul;Song, Jee-Hun

  • Received : 2015.09.30
  • Accepted : 2015.12.28
  • Published : 2015.12.31


This paper are mainly focusing on the facts influencing on RCS reductions, appling radar absorbing materials by using RCS contributions of elements and appling a metamaterials which is high-tech radar absorbing materials. RCS analysis results are given for a simplified ship model, with radar absorbing materials and metamaterials cause RCS reduction in terms of mean values.


Radar cross section;Multi-bounce effect;Naval Vessels;Radar absorbing materials;Metamaterials


  1. Chambers, B. and A. Tennant(1996), Optimized design of Jaumann radar absorbing materials using a genetic algorithm, IEEE proc. radar, sonar, navig., Vol. 143, No. 1, pp. 23-30.
  2. Cheng, D. K.(1993), Fundamentals of Engineering Electromagnetics, Addison-Wesley, Massachusetts, pp. 272-330.
  3. Cheng, Y. Z., Y. Wang, Y. Nie, R. Z. Gong, X. Xiong and X. Wang(2012), Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements, Appl. Phys., Vol. 111, pp. 0449021-04490214.
  4. Goudos, S. K.(2007), A versatile software tool for microwave planar radar absorbing materials design using global optimization algorithms, Materials and Design, Vol. 28, pp. 2585-2595.
  5. Kim, K. H., D. S. Cho and J. H. Kim(2007), Broad-band Multi-layered Radar Absorbing Material Design for Radar Cross Section Reduction of Complex Targets Consisting of Multiple Reflection Structures, Journal of the Society of Naval Architects of Korea, Vol. 44, No. 4, pp. 445-450.
  6. Knott, E. F., J. F. Shaeffer and M. T. Tuley(1993), Radar Cross Section, 2nd Edition, Artech House, Boston.London, pp. 183-224.
  7. Kwon, H. W., S. Y. Hong, K. K. Lee, J. C. Lee, I. C. Na and J. H. Song(2014a), Analysis of Radar Cross Section for Advanced Naval Vessels, Journal of the Korean Society of Marine Environment & Safety, Vol. 20, No. 5, pp. 593-600.
  8. Kwon, H. W., S. Y. Hong and J. H. Song(2014b), Development of radar cross section analysis program for complex structures, Journal of the Korean Society of Marine Environment & Safety, Vol. 20, No. 4, pp. 435-442.
  9. Michielssen, E., S. M. Sajer, S. Ranjithan and R. Mittra(1993), Design of lightweight, broad band microwave absorbers using genetic algorithms, IEEE Trans. Microwave Theory Tech, Vol. 41, No. 6/7, pp. 1024-1031.
  10. Park, H. S., I. S. Choi, J. K. Bang, S. H. Suk, S. S. Lee and H. T. Kim(2004), Optimization design of radar absorbing materials for complex target, Journal of electromagnetic waves and applications, Vol. 18, pp. 1105-1117.
  11. Park, T. Y.(2004), A study on RCS prediction code for battleship, MS. Dissertation, POSTECH, pp. 29-61.
  12. Shelby, R., D. Smith and S. Schultz(2001), Experimental verification of a megative index of refraction, Science, 292(5514): 77.
  13. Shin, D. H.(2011), Desing of metamaterials using effective medium, MS. Dissertation, Yonsei Univ., pp. 1-12.
  14. Suk, S. H.(2001), RCS Prediction of complex targets, MS. Dissertation, POSTECH, pp. 69-70.
  15. Weile, D. S., E. Michielssen and D. E. Goldberg(1995), Genetic algorithm design of pareto optimal broadband microwave absorbers, IEEE Trans. electromagn. compat., Vol. 38, No. 3, pp. 518-525.


Grant : 해양플랜트특성화대학