DOI QR코드

DOI QR Code

SOME OPIAL-TYPE INEQUALITIES APPLICABLE TO DIFFERENTIAL EQUATIONS INVOLVING IMPULSES

KIM, YOUNG JIN

  • Received : 2015.03.09
  • Accepted : 2015.09.07
  • Published : 2015.11.30

Abstract

The purpose of this paper is to obtain Opial-type inequalities that are useful to study various qualitative properties of certain differential equations involving impulses. After we obtain some Opial-type inequalities, we apply our results to certain differential equations involving impulses.

Keywords

Stieltjes derivatives;Opial-type inequalities;differential equations involv-ing impulses

References

  1. M. Tvrdý : Regulated functions and the Perron-Stieltjes integral. Časopis pešt. mat. 114 (1989), no. 2, 187-209.
  2. Š. Schwabik, M. Tvrdý & O. Vejvoda: Differntial and integral equations: boundary value problems and adjoints. Academia and D. Reidel, Praha and Dordrecht, 1979.
  3. Š. Schwabik: Generalized ordinary differential equations. World Scientific, Singapore, 1992.
  4. A.M. Samoilenko & N.A. Perestyuk: Impulsive differential equations. World Scientific, Singapore, 1995.
  5. W.F. Pfeffer: The Riemann approach to integration: local geometric theory. Cambridge Tracts in Mathematics 109, Cambridge University Press, 1993.
  6. P. Krejčí & J. Kurzweil: A nonexistence result for the Kurzweil integral. Math. Bohem. 127 (2002), 571-580.
  7. ______: Stieltjes derivative method for integral inequalities with impulses. J. Korean Soc. Math. Educ.Ser. B: Pure Appl. Math. 21 (2014), no. 1, 61-75.
  8. Y.J. Kim: Stieltjes derivatives and its applications to integral inequalities of Stieltjes type. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 18 (2011), no. 1, 63-78.
  9. C.S. Hönig : Volterra Stieltjes-integral equations. North Holand and American Elsevier, Mathematics Studies 16, Amsterdam and New York, 1973.
  10. R. Henstock: Lectures on the theory of integration. World Scientific, Singapore, 1988.
  11. R.P. Agarwal & P.Y.H. Pang: Opial inequalities with applications in differential anddifference equations. Kluwer Academic Publishers, Dordrecht, 1995.