Two-Dimensional Moving Blade Row Interactions in a Stratospheric Airship Contra-Rotating Open Propeller Configuration

Tang, Zhihao;Liu, Peiqing;Guo, Hao;Yan, Jie;Li, Guangchao

  • 투고 : 2015.09.01
  • 심사 : 2015.12.16
  • 발행 : 2015.12.30


The numerical simulation of two-dimensional moving blade row interactions is conducted by CFD means to investigate the interactions between the front and rear propeller in a stratospheric airship contra-rotating open propeller configuration caused by different rotational speeds. The rotational speed is a main factor to affect the propeller Reynolds number which impact the aerodynamic performance of blade rows significantly. This effect works until the Reynolds number reaches a high enough value beyond which the coefficients become independent. Additionally, the interference on the blade row has been revealed by the investigation. The front blade row moves in the induced-velocity field generated by the rear blade row and the aerodynamic coefficients are influenced when the rear blade row has fast RPMs. The rear blade row moving behind the front one is affected directly by the wake and eddies generated by the front blade row. The aerodynamic coefficients reduce when the front blade row has slow RPMs while increase when the front blade row moves faster than itself. But overall, the interference on the front blade row due to the rear blade row is slight and the interference on the rear blade row due to the front blade row is much more significant.


moving blade row;blade row interaction;contra-rotating open propeller;stratospheric airship


  1. Colozza, A., "Initial Feasibility Assessment of a High Altitude Long Endurance Airship", NASA/CR-2003-212724, 2003.
  2. Moomey, E. R., "Technical Feasibility of Loitering Lighter-than-Air Near-Space Maneuvering Vehicles", M.S. Dissertation, U.S. Air Force Inst. Of Technology Rept. ADA437762, Wright-Patterson AFB, OH, March 2005.
  3. Li, Y., Nahon, M. and Sharf, I., "Airship dynamics modeling: A literature review", Progress in Aerospace Sciences, Vol. 47, 2011, pp. 217-239. DOI: 10.1016/j.paerosci.2010.10.001
  4. Shen, J. Q., Pan. C., Wang, J. J., Yi, H. M. and Li, T., "Reynolds-Number Dependency of Boundary-Layer Transition Location on Stratospheric Airship Model", Journal of Aircraft, Vol. 52, No. 4, 2015, pp. 1355-1359. DOI: 10.2514/1.C032971
  5. Carichner, G. E. and Nicolai, L. M., Fundamentals of Aircraft and Airship Design (Volume 2: Airship Design and Case Studies), AIAA Education Series, AIAA, New York, 2013, pp. 151-195.
  6. Liu, P., Tang, Z., Chen, Y. and Guo, H., "Experimental Feasibility Assessment of Stratospheric Airship Counter-Rotating Propellers", AIAA 53rd Aerospace Sciences Meeting, Kissimmee, Florida, 2015, AIAA Paper 2015-1029. DOI: 10.2514/6.2015-1029
  7. Tang, Z., Liu, P., Chen, Y. and Guo, H., "Experimental Study of Contra-Rotating Propellers for High-Altitude Airships", Journal of Propulsion and Power, Vol. 31, No. 5, 2015, pp. 1491-1496. DOI: 10.2514/1.B35746
  8. Tang, Z., Liu, P., Sun, J., Chen, Y., Guo, H. and Li, G., "Performance of Contra-Rotating Propellers for Stratospheric Airship", International Journal of Aeronautical and Space Sciences, Vol. 16, No. 4, 2015.
  9. Whitmore, S. A. and Merrill, R. S., "Nonlinear Large Angle Solutions of the Blade Element Momentum Theory Propeller Equations", Journal of Aircraft, Vol. 49, No. 4, 2012, pp. 1126-1134. DOI: 10.2514/1.C031645
  10. Gray, W. H., "Wind Tunnel Test of Dual-Rotating Propellers with Systematic Differences in Number of Blades, Blade Setting and Rotational Speed of Front and Rear Propellers", NACA ARR No. L4E22 (WR L-80), 1944.
  11. Bartlett, W. A., "Wind-Tunnel Tests of a Dual-Rotating Propeller Having One Component Locked or Windmilling", NACA ARR No. L5A13a (WR L-214), 1945.
  12. Harrison, G. L. and Sullivan, J. P., "Measurement of a Counter Rotation Propeller Flowfield Using a Laser Doppler Velocimeter", AIAA 25th Aerospace Sciences Meeting, Reno, Nevada, 1987, AIAA Paper 1987-0008. DOI: 10.2514/6.1987-8
  13. Shin, H., Whitfield, C. E. and Wisler, D. C., "Rotor- Rotor Interaction for Counter-Rotating Fans, Part 1: Three- Dimensional Flowfield Measurements", AIAA Journal, Vol. 32, No. 11, 1994, pp. 2224-2233. DOI: 10.2514/3.12281
  14. Sturmer, A., Gutierrez, C. O. M., Roosenboom, E. W. M., Schroder, A., Geisler, R., Pallek, D., Agocs, J. and Neitzke, K., "Experimental and Numerical Investigation of a Contra Rotating Open-Rotor Flowfield", Journal of Aircraft, Vol. 49, No. 6, 2012, pp. 1868-1877. DOI: 10.2514/1.C031698
  15. Okulov, V. L., Sorensen, J. N. and Wood D. H., "The rotor theories by Professor Joukowsky: Vortex theories", Progress in Aerospace Sciences, Vol. 73, 2015, pp. 19-46. DOI: 10.1016/j.paerosci.2014.10.002
  16. Fontanals, A., Coussirat, M., Guardo, A. and Egusquiza, E., "Detailed study of the rotor-stator interaction phenomenon in a moving cascade of airfoils", IOP Conference Series: Earth and Environmental Science, Vol. 12, 2010. DOI: 10.1088/1755-1315/12/1/012089
  17. Arko, B. M. and McQuilling, M., "Computational Study of High-Lift Low-Pressure Turbine Cascade Aerodynamics at Low Reynolds Number", Journal of Propulsion and Power, Vol. 29, No. 2, 2013, pp. 446-459. DOI: 10.2514/1.B34576
  18. Lipfert, M., Habermann, J., Rose, M. G., Staudacher, S. and Guendogdu, Y., "Blade-Row Interactions in a Low Pressure Turbine at Design and Strong Off-Design Operation", Journal of Turbomachinery, Vol. 136, 2014. DOI: 10.1115/1.4028213
  19. Walther, B. and Nadarajah, S., "Adjoint-Based Constrained Aerodynamic Shape Optimization for Multistage Turbomachines", Journal of Propulsion and Power, Vol. 31, No. 5, 2015, pp. 1298-1319. DOI: 10.2514/1.B35433
  20. ANSYS Inc., ANSYS FLUENT 14.0, User's guide.
  21. Mieloszyk, J., Galinski, C. and Piechna, J., "Contrarotating propeller for fixed wing MAV: part 1", Aircraft Engineering and Aerospace Technology, Vol. 85, No. 4, 2013, pp. 304-315. DOI: 10.1108/AEAT-Jan-2012-0008
  22. Selig, M. S., Lyon, C. A., Giguere, P., Ninham, C. P. and Guglielmo, J. J., Summary of Low-Speed Airfoil Data (Volume 2), SoarTech Publications, Virginia Beach, Virginia, 1996.
  23. Selig, M. S. and Guglielmo, J. J., "High-Lift Low Reynolds Number Airfoil Design", Journal of Aircraft, Vol. 34, No. 1, 1997, pp. 72-79. DOI: 10.2514/2.2137
  24. Cummings, R. M., Forsythe, J. R., Morton, S. A. and Squires, K. D., "Computational Challenges in High Angle of Attack Flow Prediction", Progress in Aerospace Sciences, Vol. 39, No. 5, 2003, pp. 369-384. DOI: 10.1016/S0376-0421(03)00041-1

피인용 문헌

  1. Simplified Analytical Model for Investigating the Output Power of Solar Array on Stratospheric Airship vol.17, pp.3, 2016,


연구 과제 주관 기관 : National Natural Science Foundation of China