DOI QR코드

DOI QR Code

Quasi-steady State Simulation of Rotating Detonation Engine

  • Niyasdeen, Mohammed ;
  • Oh, Sejong ;
  • Kim, Kui Soon ;
  • Choi, Jeong-Yeol
  • Received : 2015.07.27
  • Accepted : 2015.12.10
  • Published : 2015.12.30

Abstract

We performed a numerical simulation based on the two-dimensional (2-D) unsteady Euler's equation with a single-step Arrhenius reaction model in order to investigate the detonation wave front propagation of an Argon (Ar) diluted oxy-hydrogen mixture ($2H_2+O_2+12Ar$). This simulation operates in the detonation frame of reference. We examine the effect of grid size and the performance impact of integrated quantities such as mass flow. For a given set of baseline conditions, the minimal and maximum grid resolutions required to simulate the respective detonation waves and the detonation cell structures are determined. Tertiary shock wave behavior for various grids and pre-exponential factors are analyzed. We found that particle fluctuation can be weakened by controlling the mass flow going through the oblique shock waves.

Keywords

Rotating detonation engine (RDE);pulse detonation engine (PDE);oblique shock waves;numerical simulation

References

  1. Tsuboi, N., Yamada, T., Hayashi, A. K. and Yamada, E., "Three Dimensional Simulation on a Rotating Detonation Engine: Three Dimensional Shock Structure", 4th International Symposium on Energy Materials and their Applications, Japan, 2011.
  2. Braun, E. M., Lu, F. K., Wilson, D. R. and Camberos, J. A., "Air Breathing Rotating Detonation Wave Engine Cycle Analysis", Aerospace Science and Technology, Vol. 27, Issue 1, 2013, pp. 201 - 208. DOI:10.1016/j.ast.2012.08.010 https://doi.org/10.1016/j.ast.2012.08.010
  3. Davidenko, D., Eude, Y., Gokalp, I. and Falempin, F., "Theoretical and Numerical Studies on Continuous Detonation Wave Engines", Detonation Wave Propulsion Workshop, Bourges France, 11 - 13 July 2011.
  4. Zhou, R. and Wang, J. P., "Numerical Investigation of Flow Particle Paths and Thermodynamic Performance of Continuously Rotating Detonation Engines", Combustion and Flame, Vol. 159, Issue 12, 2012, pp. 3632 - 3645. DOI:10.1016/j.combustflame.2012.07.007 https://doi.org/10.1016/j.combustflame.2012.07.007
  5. Eude, Y. and Davidenko, D., "Numerical Simulation and Analysis of a Three Dimensional Continuous Detonation under Rocket Engine Conditions", Detonation Wave Propulsion Workshop, Bourges France, 11 - 13 July 2011.
  6. Yi, T. H., Lou, J., Turangan, C., Choi, J. Y., Wolanski, P., "Propulsive Performance of a Continuously Rotational Detonation Engine", Journal of Propulsion and Power, Vol. 27, Issue. 1, 2011, pp. 171 - 181. DOI: 10.2514/1.46686 https://doi.org/10.2514/1.46686
  7. Naour, B. L., Falempin, F. and Miquel, F., "Recent Experimental Results obtained on Continuous Detonation Wave Engine", Detonation Wave Propulsion Workshop, Bourges France, 11 - 13 July 2011.
  8. Davidenko, D., Jouot, F., Kudryavtsev, A., Dupre, G., Gokalp, I., Daniau, E. and Falempin, F., "Continuous Detonation Wave Engine Studies for Space Application", European Conference for Aeronautics and Space Sciences Proceedings Series, Vol. 1, 2009, pp. 353 - 366. DOI:10.1051/eucass/200901353 https://doi.org/10.1051/eucass/200901353
  9. Endo, T., Susa, A., Kanekiyo, K., Hanta, Y., Mitsunobu, A. and Takahashi, T., "Development of Pulse Detonation Technology in Valveless mode and its Application to Turbine Drive Experiments", International Workshop on Detonation for Propulsion, South Korea, 14 - 15 November 2011.
  10. Oran, E. S., Boris, J. P., Young, T., Flanigan, M., Burks, T. and Picone, M., "Numerical Simulations of Detonations in Hydrogen-Air and Methane-Air Mixtures", 18th International Symposium on Combustion, Vol. 18, Issue 1, 1981, pp. 1641 - 1649. DOI:10.1016/S0082-0784(81)80168-3 https://doi.org/10.1016/S0082-0784(81)80168-3
  11. Taki, S. and Fujiwara, T., "Numerical Simulation of Triple Shock behavior of Gaseous Detonation", 18th International Symposium on Combustion, Vol. 18, Issue 1, 1981, pp. 1671 - 1681. DOI:10.1016/S0082-0784(81)80171-3 https://doi.org/10.1016/S0082-0784(81)80171-3
  12. Kailasanath, K., Oran, E. S., Boris, J. P., and Young, T. R., "Determination of Detonation Cell Size and the Role of Transverse Waves in Two Dimensional Detonations," Combustion and Flame, Vol. 61, Issue 3, 1985, pp. 199 - 209. DOI:10.1016/0010-2180(85)90101-4 https://doi.org/10.1016/0010-2180(85)90101-4
  13. Bourlioux, A. and Majda, A. J., "Theoretical and Numerical Structure for Unstable Two Dimensional Detonations," Combustion and Flame, Vol. 90, Issues 3 - 4, 1992, pp. 211 - 229. DOI:10.1016/0010-2180(92)90084-3 https://doi.org/10.1016/0010-2180(92)90084-3
  14. Oran, E. S., Weber, J. W., Stefaniw, E. I., Lefebvre, M. H. and Anderson, J. D., "A Numerical Study of a Two-Dimensional H2-O2-Ar Detonation Using a Detailed Chemical Reaction Model," Combustion and Flame, Vol. 113, Issues 1-2, 1998, pp. 147 - 163. DOI:10.1016/S0010-2180(97)00218-6 https://doi.org/10.1016/S0010-2180(97)00218-6
  15. Gamezo V. N., Desbordes, D. and Oran, E. S., "Formation and Evolution of Two-Dimensional Cellular Detonations," Combustion and Flame, Vol. 116, Issues 1 - 2, 1999, pp. 154 - 165. DOI:10.1016/S0010-2180(98)00031-5 https://doi.org/10.1016/S0010-2180(98)00031-5
  16. Gavrikov, A. I., Efimenko, A. A. and Dorofeev, S. B., "A Model for Detonation Cell Size prediction from Chemical Kinetics," Combustion and Flame, Vol. 120, Issues 1-2, 2000, pp. 19-33. DOI:10.1016/S0010-2180(99)00076-0 https://doi.org/10.1016/S0010-2180(99)00076-0
  17. Sharpe, G.J., "Transverse Waves in Numerical Simulations of Cellular Detonations," Journal of Fluid Mechanics, Vol. 447, 2001, pp. 31 - 51. DOI: http://dx.doi.org/10.1017/S0022112001005535 https://doi.org/10.1017/S0022112001005535
  18. Hu, X. Y., Khoo, B. C., Zhang, D. L. and Jiang, Z. L., "The Cellular Structure of a Two-Dimensional H2/O2/Ar Detonation Wave," Combustion Theory and Modelling, Vol. 8, Issue 2, 2004, pp. 339 - 359. https://doi.org/10.1088/1364-7830/8/2/008
  19. Liang, Z. and Bauwens, L., "Cell Structure and Stability of Detonations with a Pressure-dependent Chain-branching Reaction Rate Model," Combustion Theory and Modelling, Vol. 9, Issue 1, 2005, pp. 93 - 112. https://doi.org/10.1080/13647830500051885
  20. Fickett, W. and Davis, W.C., Detonation: Theory and Experiment, Dover Publications, Inc., Mineola, New York, 1979.
  21. Choi, J. Y., Ma, F. H. and Yang, V., "Some Numerical Issues on Simulation of Detonation Cell Structures", Combustion, Explosion, and Shock Waves, Vol. 44, Issue 5, 2008, pp. 560 - 578. https://doi.org/10.1007/s10573-008-0086-x
  22. Hishida, M., Fujiwara, T. and Wolanski, P., "Fundamentals of Rotating Detonations", Shock waves, Vol. 19, Issue 1, 2009, pp. 1 - 10. https://doi.org/10.1007/s00193-008-0178-2
  23. Voitsekhovskii, B. V., "About Spinning Detonation", Dokl. Akad. Nauk SSSR, Vol. 114, 1957, pp. 717 - 720.
  24. Voitsekhovskii, B.V. and Kotov, B.E., "Optical Investigation of the Front of Spinning Detonation Wave", Izv. Sibirsk. Otd. Akad. Nauk SSSR, Vol. 4, 1958.
  25. Cullen, R. E., Nicholls, J. A. and Ragland, K.W., "Feasibility Studies of a Rotating Detonation Wave Rocket Motor", Journal of Spacecraft and Rockets, Vol. 3, Issue 6, 1966, pp. 893 - 898. https://doi.org/10.2514/3.28557
  26. Nicholls, J. A., Wilkinson, H. R. and Morrison, R. B., "Intermittent Detonation as a Thrust-Producing Mechanism", Journal of Jet Propulsion, Vol. 27, Issue 5, 1957, pp. 534 - 541. DOI: 10.2514/8.12851 https://doi.org/10.2514/8.12851
  27. Bykovskii, F. A., Vasil'ev, A. A., Vedernikov, E. F. and Mitrofanov, V. V., "Explosive Combustion of a Gas Mixture in Radial Annular Chambers", Combustion, Explosion and Shock Waves, Vol. 30, Issue 4, 1994, pp. 510 - 516.
  28. Bykovskii, F. A., Vasil'ev, A. A. and Vedernikov, E. F., "Continuous Spin Detonation of Fuel-air Mixtures", Combustion Explosion and Shock Waves, Vol. 42, Issue 4, 2006, pp. 463 - 471. https://doi.org/10.1007/s10573-006-0076-9
  29. Daniau, E., Falempin, F. and Zhdan, S., "Pulsed and Rotating Detonation Propulsion Systems: First Step toward Operational Engines," AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies, 2005.
  30. Falempin, F. and Daniau, E., "A Contribution to the Development of Actual Continuous Detonation Wave Engine", 15th AIAA International Space Planes and Hypersonics Systems and Technologies Conference, 2008.
  31. Hayashi, A. K., Kimura, Y., Yamada, T., Yamada, E., Kindracki, J., Dzieminska, E., Wolanski, P., Tsuboi, N., Tangirala, V. and Fujiwara, T., "Sensitivity Analysis of Rotating Detonation Engine with a Detailed Reaction Model", 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, 2009
  32. Schwer, D. and Kailasanath, K., "Numerical Investigation of the Physics of Rotating Detonation-Engines", Proceedings of the Combustion Institute, Vol. 33, Issue 2, 2011, pp. 2195 - 2202. DOI:10.1016/j.proci.2010.07.050 https://doi.org/10.1016/j.proci.2010.07.050
  33. Claflin, S., "Recent Progress in Rotating Detonation Engine Development at Aerojet Rocketdyne", International Workshop on Detonation for Propulsion, Taiwan, 2013.
  34. Austin, J. M., "The Role of Instability in Gaseous Detonation", Thesis Dissertation, California Institute of Technology, California, 2003.
  35. Lee, J. H. S., "The Detonation Phenomenon", Cambridge University Press, New York, 2008.

Cited by

  1. The Experimental Study about the Effect of Operating Conditions on Multi-tube Pulse Detonation Engine Performance vol.19, pp.1, 2018, https://doi.org/10.1007/s42405-018-0026-2

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)