DOI QR코드

DOI QR Code

Phase Formation Behavior and Charge-discharge Properties of Carbon-coated Li2MnSiO4 Cathode Materials for Lithium Rechargeable Batteries

리튬이차전지용 탄소 코팅된 Li2MnSiO4 양극활물질의 상형성 거동 및 충방전 특성

Sun, Ho-Jung;Chae, Suman;Shim, Joongpyo
선호정;채수만;심중표

  • Received : 2015.07.09
  • Accepted : 2015.10.23
  • Published : 2015.11.30

Abstract

Carbon-coated $Li_2MnSiO_4$ powders as the active materials for the cathode were synthesized by planetary ball milling and solid-state reaction, and their phase formation behavior and charge-discharge properties were investigated. Calcination temperature and atmosphere were controlled in order to obtain the ${\beta}-Li_2MnSiO_4$ phase, which was active electrochemically, and the carbon-coated $Li_2MnSiO_4$ active material powders with near single phase ${\beta}-Li_2MnSiO_4$ could be fabricated. The particles of the synthesized powders were secondary particles composed of primary ones of about 100 nm size. The carbon incorporation was essential to enable the Li ions to be inserted and extracted from $Li_2MnSiO_4$ active materials, and the initial capacity of 192 mAh/g could be obtained in the $Li_2MnSiO_4$ active materials with 4.8 wt% of carbon.

Keywords

$Li_2MnSiO_4$;planetary ball mill;solid-state reaction;carbon-coating;cathode;lithium rechargeable battery

References

  1. T.-H. Kim, J.-S. Park, S. K. Chang, S. Choi, J. H. Ryu, and H.-K. Song, "The current move of lithium ion batteries towards the next phase", Adv. Energy Mater., 2, 860 (2012). https://doi.org/10.1002/aenm.201200028
  2. B. Xu, D. Qian, Z. Wang, and Y. S. Meng, "Recent progress in cathode materials research for advanced lithium ion batteries" Mater. Sci. Eng. R, 73, 51 (2012). https://doi.org/10.1016/j.mser.2012.05.003
  3. M. S. Islam, R. Dominko, C. Masquelier, C. Sirisopanaporn, A. R. Armstrong, and P. G. Bruce, "Silicate cathodes for lithium batteries: alternatives to phosphates?", J. Mater. Sci., 21, 9811 (2011).
  4. R. J. Gummow and Y. He, "Recent progress in the development of $Li_2MnSiO_4$ cathode materials", J. Power Sources, 253, 315 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.082
  5. V. V. Politaev, A. A. Petrenko, V. B. Nalbandyan, B. S. Medvedev, and E. S. Shvetsova, "Crystal structure, phase relations and electrochemical properties of monoclinic $Li_2MnSiO_4$", J. Solid State Chem., 180, 1045 (2007). https://doi.org/10.1016/j.jssc.2007.01.001
  6. L. Qu, S. Fang, L. Yang, and S. Hirano, "Synthesis and characterization of high capacity $Li_2MnSiO_4$/C cathode material for lithium-ion battery", J. Power Sources, 252, 169 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.076
  7. F. Wang, J. Chen, C. Wang, and B. Yi, "Fast sol-gel synthesis of mesoporous $Li_2MnSiO_4$/C nanocomposite with improved electrochemical performance for lithiumion batteries", J. Electroanal. Chem., 688, 123 (2013). https://doi.org/10.1016/j.jelechem.2012.10.014
  8. S. Liu, J. Xu, D. Li, Y. Hu, X. Liu, and K. Xie, "High capacity $Li_2MnSiO_4$/C nanocomposite prepared by sol-gel method for lithium-ion batteries", J. Power Sources, 232, 258 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.126
  9. I. Belharouak, A. Abouimrane, and K. Amine, "Structural and electrochemical characterization of $Li_2MnSiO_4$ cathode material", J. Phys. Chem. C, 113, 20733 (2009). https://doi.org/10.1021/jp905611s
  10. K. Gao, C.-S. Dai, J. Lv, and S.-D. Li, "Thermal dynamics and optimization on solid-state reaction for synthesis of $Li_2MnSiO_4$ materials", J. Power Sources, 211, 97 (2012). https://doi.org/10.1016/j.jpowsour.2012.03.048
  11. V. Aravindan, K. Karthikeyan, K. S. Kang, W. S, Yoon, W. S. Kim, and Y. S. Lee, "Influence of carbon towards improved lithium storage properties of $Li_2MnSiO_4$ cathodes", J. Mater, Chem., 21, 2470 (2011). https://doi.org/10.1039/c0jm03471a
  12. M.P. Pechini, "Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor", US Patent No 3,330,697 (1967).
  13. R. Dominko, "$Li_2MSiO_4$ (M = Fe and/or Mn) cathode materials", J. Power Sources, 184, 462 (2008). https://doi.org/10.1016/j.jpowsour.2008.02.089
  14. T. Muraliganth, K.R. Stroukoff, A. Manthiram, "On the energetic stability and electrochemistry of $Li_2MnSiO_4$ polymorphs", Chem. Mater., 22, 5754 (2010). https://doi.org/10.1021/cm102058n
  15. S. Zhang, C. Deng, F.L. Liu, Q. Wu, M. Zhang, F.L. Meng, H. Gao, "Impacts of in situ carbon coating on the structural, morphological and electrochemical characteristics of $Li_2MnSiO_4$ prepared by a citric acid assisted sol-gel method", J. Electroanal. Chem., 689, 88 (2013). https://doi.org/10.1016/j.jelechem.2012.11.028
  16. S. Won, K.-K. Lee, G. Park, H.-J. Sun, J.-C. An, J. Shim, "Physical and electrochemical characteristics of carbon content in carbon-coated $Li_2MnSiO_4$ for rechargeable lithium batteries", J. Appl. Electrochem., 45, 169 (2015). https://doi.org/10.1007/s10800-014-0778-8
  17. A.R. West and F.P. Glasser, "Preparation and crystal chemistry of some tetrahedral $LiFePO_4$-type compounds", J. Solid State Chem., 4, 20 (1972). https://doi.org/10.1016/0022-4596(72)90127-2
  18. C. Wang, B. Dou, Y. Song, H. Chen, M. Yang, Y. Xu, "Kinetic study on non-isothermal pyrolysis of sucrose biomass", Energy Fuels, 28, 3793 (2014). https://doi.org/10.1021/ef500940q
  19. Z. Chen, J. R. Dahn, "Reducing carbon in $LiFePO_4/C$ composite electrodes to maximize specific energy, volumetric energy, and tap density", J. Electrochem. Soc., 149, A1184 (2002) https://doi.org/10.1149/1.1498255
  20. J. Ying, M. Lei, C. Jiang , C. Wan, X. He, J. Li, L. Wang, J. Ren, "Preparation and characterization of high-density spherical $Li_{0.97}Cr_{0.01}FePO_4$/C cathode material for lithium ion batteries", J. Power Sources 158, 543 (2006). https://doi.org/10.1016/j.jpowsour.2005.08.045
  21. R. Dominko, M. Bele, A. Kokalj, M. Gaberscek, and J. Jamnik, "$Li_2MnSiO_4$ as a potential Li-battery cathode material", J. Power Sources, 174, 457 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.188

Acknowledgement

Supported by : 국가핵융합연구소, 기초기술연구회