Electrolytic Reduction Characteristics of Titanium Oxides in a LiCl-Li2O Molten Salt

LiCl-Li2O 용융염에서 타이타늄 산화물의 전해환원 특성

Lee, Jeong;Kim, Sung-Wook;Lee, Sang-Kwon;Hur, Jin-Mok;Choi, Eun-Young

  • Received : 2015.07.29
  • Accepted : 2015.09.01
  • Published : 2015.11.30


Experiments using a metal oxide of a non-nuclear material as a fuel are very useful to develop a new electrolytic reducer for pyroprocessing. In this study, the titanium oxides (TiO and $TiO_2$) were selected and investigated as the non-nuclear fuel for the electrolytic reduction. The immersion tests of TiO and $TiO_2$ in a molten 1.0 wt.% $Li_2O$-LiCl salt revealed that they have solubility of 156 and 2100 ppm, respectively. Then, the Ti metals were successfully produced after the separate electrolytic reduction of TiO and $TiO_2$ in a molten 1.0 wt.% $Li_2O$-LiCl salt. However, Ti was detected on the platinum anode used for the electrolytic reduction of $TiO_2$ unlike TiO due to the dissolution of $TiO_2$ into the salt.


titanium oxide;electrolytic reduction;LiCl;molten salt


  1. T. Nohira, K. Yasuda and Y. Ito, 'Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon' Nature Materials, 2, 397 (2003).
  2. K. Yasuda, T. Nohira, R. Hagiwara and Y. H. Ogata, 'Direct electrolytic reduction of solid $SiO_2$ in molten $CaCl_2$ for the production of solar grade silicon' Electrochim. Acta, 53, 106 (2007).
  3. S. M. Jeong, J. Y. Jung, C. S. Seo and S. W. Park, 'Characteristics of an electrochemical reduction of $Ta_2O_5$ for the preparation of metallic tantalum in a LiCl-$Li_2O$ molten salt' J. Alloy. Compd., 440, 210 (2007).
  4. X. Y. Yan and D. J. Fray, 'Production of Niobium Powder by Direct Electrochemical Reduction of Solid $Nb_2O_5$ in a Eutectic $CaCl_2$-NaCl Melt' Metall. Mater. Trans. B, 33B, 685 (2002).
  5. S. M. Jeong, H. Y. Yoo, J.-M. Hur and C.-S. Seo, 'Preparation of metallic niobium from niobium pentoxide by an indirect electrochemical reduction in a LiCl-$Li_2O$ molten salt' J. Alloy. Compd., 452, 27 (2008).
  6. S. I. Wang, G. M. Haarberg and E. Kvalheim, 'Electrochemical behavior of dissolved $Fe_2O_3$ in molten $CaCl_2$-KF' J. Iron Steel Res. Int., 15, 48 (2008).
  7. D. Wang, G. Qiu, X. Jin, X. Hu and G. Z. Chen, 'Electrochemical metallization of solid terbium oxide' Angew. Chem. Int. Edit., 45, 2384 (2006).
  8. Q. Xu, L.-Q. Deng, Y. Wu and T. Ma, 'A study of cathode improvement for electro-deoxidation of $Nb_2O_5$ in a eutectic $CaCl_2$-NaCl melt at 1073K' J. Alloy. Compd., 396, 288 (2005).
  9. G. Z. Chen, E. Gordo and D. J. Fray, 'Direct electrolytic preparation of chromium powder' Metall. Mater. Trans. B, 35B, 223 (2004).
  10. E. Gordo, G. Z. Chen and D. J. Fray, 'Toward optimisation of electrolytic reduction of solid chromium oxide to chromium powder in molten chloride salts' Electrochim. Acta, 49, 2195 (2004).
  11. B. Claux, J. Serp and J. Fouletier, 'Electrochemical reduction of cerium oxide into metal' Electrochim. Acta, 56, 2771 (2011).
  12. G. Z. Chen, D. J. Fray and T. W. Farthing, 'Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride' Nature, 407, 361 (2000).
  13. C. Schwandt and D. J. Fray, 'Determination of the kinetic pathway in the electrochemical reduction of titanium dioxide in molten calcium chloride' Electrochim. Acta, 51, 66 (2005).
  14. I. Park, T. Abiko and T. H. Okabe, 'Production of titanium powder directly from $TiO_2$ in $CaCl_2$ through an electronically mediated reaction (EMR)' J. Phys. Chem. Solids., 66, 410 (2005).
  15. K. Jiang, X. Hu, H. Sun, D. Wang, X. Jing, Y. Ren and G. Z. Chen, 'Electrochemical synthesis of Li$TiO_2$ and $LiTi_2O_4$ in molten LiCl' Chem. Mater., 16, 4324 (2004).
  16. J.-M. Hur, S.-C. Lee, S.-M. Jeong and C.-S. Seo, 'Electrochemical reduction of $TiO_2$ in molten LiCl-$Li_2O$' Chem. Lett., 36, 1028 (2007).
  17. H.-S. Shin, J.-M. Hur, S. M. Jeong and K. Y. Jung, 'Direct electrochemical reduction of titanium dioxide in molten lithium chloride' J. Ind. Eng. Chem., 18, 438 (2012).
  18. K.-C. Song, H. Lee, J.-M. Hur, J.-K. Kim, D.-H. Ahn and Y.-Z. Cho, 'Status of pyroprocessing technology development in Korea' Nucl. Eng. Technol., 42, 131 (2010).
  19. S. D. Herrmann and S. X. Li, 'Separation and recovery of uranium metal from spent light water reactor fuel via electrolytic reduction and electrorefining' Nucl. Technol., 171, 247 (2010).
  20. K. M. Goff, J. C. Wass, K. C. Marsden and G. M. Teske, 'Electrochemical processing of used nuclear fuel' Nucl. Eng. Technol., 43, 335 (2011).
  21. E. J. Karell, K. V. Gourishankar, J. L. Smith, L. S. Chow and L. Redey, 'Separation of actinides from LWR spent fuel using molten-salt-based electrochemical processes' Nucl. Technol., 136, 342 (2001).
  22. E.-Y. Choi, J. W. Lee, J. J. Park, J.-M. Hur, J.-K. Kim, K. Y. Jung and S. M. Jeong, 'Electrochemical reduction behavior of a highly porous SIMFUEL particle in a LiCl molten salt' Chem. Eng. J., 207, 514 (2012).
  23. E.-Y. Choi, J.-K. Kim, H.-S. Im, I.-K. Choi, S.-H. Na, J. W. Lee, S. M. Jeong and J.-M. Hur, 'Effect of the $UO_2$ form on the electrochemical reduction rate in a LiCl-$Li_2O$ molten salt' J. Nucl. Mater., 437, 178 (2013).
  24. E.-Y. Choi, C. Y. Won, J.-S. Cha, W. Park, H.-S. Im, S. S. Hong and J.-M. Hur, 'Electrochemical reduction of $UO_2$ in LiCl-$Li_2O$ molten salt using porous and nonporous anode shrouds' J. Nucl. Mater., 444, 261 (2014).


Supported by : 한국연구재단