DOI QR코드

DOI QR Code

Comparative Cycling Performance of Zn2GeO4 and Zn2SnO4 Nanowires as Anodes of Lithium- and Sodium Ion Batteries

Zn2GeO4와 Zn2SnO4 나노선의 리튬 및 소듐 이온전지 성능 비교 연구

Lim, Young Rok;Lim, SooA;Park, Jeunghee;Cho, Won Il;Lim, Sang Hoo;Cha, Eun Hee
임영록;임수아;박정희;조원일;임상후;차은희

  • Received : 2015.08.28
  • Accepted : 2015.11.25
  • Published : 2015.11.30

Abstract

High-yield zinc germanium oxide ($Zn_2GeO_4$) and zinc tin oxide ($Zn_2SnO_4$) nanowires were synthesized using a hydrothermal method. We investigated the electrochemical properties of these $Zn_2GeO_4$ and $Zn_2SnO_4$ nanowires as anode materials of lithium ion battery and sodium ion battery. The $Zn_2GeO_4$ and $Zn_2SnO_4$ nanowires showed excellent cycling performance of the lithium ion battery, with a maximum capacity of 1021 mAh/g and 692 mAh/g after 50 cycles, respectively, with a high Coulomb efficiency of 98 %. For the first time, we examined the cycling performance of $Zn_2GeO_4$ and $Zn_2SnO_4$ nanowires for sodium ion batteries. The maximum capacity is 168 mAh/g and 200 mAh/g after 50 cycles, respectively, with a high Coulomb efficiency of 97%. These nanowires are expected as promising electrode materials for the development of high-performance lithium ion batteries as well as sodium ion batteries.

Keywords

Zinc germanium oxide;Zinc tin oxide;Hydrothermal method;Lithium ion battery;Sodium ion battery

References

  1. R. Z. Hu, H. Liu and J. W. Liu, Chin. Sci. Bull. 57, 4119 (2012). https://doi.org/10.1007/s11434-012-5303-z
  2. X. L. Wu, Y. G. Guo and L. J. Wan, Chem. Asian J. 8, 1948 (2013). https://doi.org/10.1002/asia.201300279
  3. J. D. Ocon, J. K. Lee and J. Lee, Appl. Chem. Eng. 25, 1 (2014). https://doi.org/10.14478/ace.2014.1008
  4. M. R. St. John, A. J. Furgala and A. F. Sammells, J. Electrochem. Soc. 129, 246 (1982). https://doi.org/10.1149/1.2123803
  5. J. Graetz, C. C. Ahn, R. Yazami and B. Fultz, J. Electrochem. Soc.151, A698 (2004). https://doi.org/10.1149/1.1697412
  6. R. A, Higgns, J. Power Sources. 81-82, 13 (1999). https://doi.org/10.1016/S0378-7753(99)00124-X
  7. M. Winter and J. O. Besenhard, Electrochim. Acta 45, 31 (1999). https://doi.org/10.1016/S0013-4686(99)00191-7
  8. J.K. Feng, M.O. Lai and L. Lu, Electrochem Commun. 13, 287 (2011) https://doi.org/10.1016/j.elecom.2011.01.005
  9. R. Yi, J. Feng, D. Lv, M. L. Gordin, S. Chen, D. Choi and D. Wang, Nano Energy. 2, 498 (2013). https://doi.org/10.1016/j.nanoen.2012.12.001
  10. F. Zou, X. Hu, Y. Sun, W. Luo, F. Xia, L. Qie, Y. Jiang and Y. Huang, Chem. Eur. J. 19, 6027 (2013). https://doi.org/10.1002/chem.201204588
  11. W. Li, X. Wang, B. Liu, J. Xu, B. Liang, T. Luo, S. Luo, D. Chen and G. Shen, Nanoscale. 5, 10291 (2013). https://doi.org/10.1039/c3nr03530a
  12. F. Zou, X. Hu, L. Qie, Y. Jiang, X. Xiong, Y. Qiao and Y. Huang, Nanoscale. 6, 924 (2014). https://doi.org/10.1039/C3NR04917E
  13. W. Chen, L. Lu, S. Maloney, Y. Yang and W. Wang, Phys. Chem. Chem. Phys. 17, 5109 (2015). https://doi.org/10.1039/C4CP05705H
  14. A. Rong, X. P. Gao, G. R. Li, T. Y. Yan, H. Y. Zhu, J. Q. Qu and D. Y. Song, J. Phys. Chem. B. 110, 14754 (2006). https://doi.org/10.1021/jp062875r
  15. X. J. Zhu, L. M. Geng, F. Q. Zhang, Y. X. Liu and L. B. Cheng, J. Power. Sources. 189, 828 (2009). https://doi.org/10.1016/j.jpowsour.2008.07.028
  16. X. Hou, Q. Cheng, Y. Bai and W. F. Zhang, Solid State Ionics. 181, 631 (2010). https://doi.org/10.1016/j.ssi.2010.03.006
  17. S. M. Becker, M. Scheuermann, V. Sepelak, A. EichhOfer, D. Chen, R. MOnig, A. S. Ulrich, d. H. Hahnab and S. Indris, Phys. Chem. Chem. Phys. 13, 19624 (2011). https://doi.org/10.1039/c1cp22298h
  18. N. Feng, S. Peng, X. Sun, L. Qiao, X. Li, P. Wang, D. Hu and D. He, Mater Lett. 76, 66 (2012). https://doi.org/10.1016/j.matlet.2012.02.071
  19. K. Kim, A. Annamalai, S. H. Park, T. H. Kwon, M. W. Pyeon, M. J. Lee, Electrochim Acta. 76, 192 (2012). https://doi.org/10.1016/j.electacta.2012.04.121
  20. W. Song, J. Xie, S. Liu, G. Cao, T. Zhu and X. Zhao, J. Mater. Res. 28, 24 (2012).
  21. X. Zheng, Y. Li, Y. Xu, Z. Hong and M. Wei, CrystEng Comm. 14, 2112 (2012). https://doi.org/10.1039/c2ce06350f
  22. Y. Zhao, Y. Huang, Q. Wang, K. Wang, M. Zong, L. Wang, W. Zhang and X. Sun, RSC Adv. 3, 14480 (2013). https://doi.org/10.1039/c3ra42176g
  23. C. T. Cherian, M. Zheng, M. V. Reddy, B. V. R. Chowdari, and C. H. Sow, ACS Appl. Mater. Interfaces. 5, 6054 (2013). https://doi.org/10.1021/am400802j
  24. W. Song, J. Xie, W. Hu, S. Liu, G. Cao, T. Zhu and X. Zhao, J. Power. Sources. 229, 6 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.090
  25. H. Huang, Y. Huang, M. Wang, X. Chen, Y. Zhao, K. Wang and H. Wu, Electrochim Acta. 147, 201 (2014). https://doi.org/10.1016/j.electacta.2014.09.117
  26. H. Fan, Z. Liu, J. Yang, C. Wei, J. Zhang, L. Wu and We. Zheng, RSC Adv. 4, 49806 (2014). https://doi.org/10.1039/C4RA08125K
  27. Y. Zhao, Y. Huang, X. Sun, H. Huang, K. Wang, M. Zong and Q. Wang, Electrochim Acta. 120, 128 (2014). https://doi.org/10.1016/j.electacta.2013.12.098
  28. K Wang, Y. Huangn, H. Huang, Y. Zhao, X. Qin, X. Sun and Y. Wang, Ceram Int. 40, 8021 (2014). https://doi.org/10.1016/j.ceramint.2013.12.154
  29. R. Zhang, Y. He and L. Xu, J. Mater. Chem. A. 2, 17979 (2014). https://doi.org/10.1039/C4TA03227F
  30. K. Wang, Y. Huangn, T. Han, Y. Zhao, H. Huang and L. Xue, Ceram Int. 40, 2359 (2014). https://doi.org/10.1016/j.ceramint.2013.08.006
  31. T. Jiang, X. Tian, H. Gu, H. Zhu and Y Zhou, J. Alloys Compd. 639, 239 (2015). https://doi.org/10.1016/j.jallcom.2015.03.172
  32. C. Yan, J. Yang, Q. Xie, Z. Lu, B. Liu, C. Xie, S. Wu, Y Zhang and Y. Guan, Mater Lett. 138, 120 (2015). https://doi.org/10.1016/j.matlet.2014.09.110
  33. L. Qin, S. Liang, A. Pan and X. Tan, Mater Lett. 141, 255 (2015). https://doi.org/10.1016/j.matlet.2014.11.132
  34. B. -Y. Wang, H. -Y. Wang, Y. -L. Ma, X. -H. Zhao, W. Qi and Q. -C. Jiang, J. Power. Sources. 281, 341 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.014
  35. Z. Li, J. Ding and D. Mitlin, Acc. Chem. Res. 48, 1657 (2015). https://doi.org/10.1021/acs.accounts.5b00114
  36. L. Baggetto, J. K. Keum , J. F. Browning , G. M. Veith, Electrochem Commu. 34, 41 (2013). https://doi.org/10.1016/j.elecom.2013.05.025
  37. A. Kohandehghan, K. Cui, M. Kupsta, J. Ding, E. M. Lotfabad, W. P. Kalisvaart and D. Mitlin, Nano Lett. 14, 5873 (2014). https://doi.org/10.1021/nl502812x
  38. Y. Xu , Y. Zhu, Y. Liu and C. Wang, Adv. Energy Mater. 3, 128 (2013). https://doi.org/10.1002/aenm.201200346
  39. D. -H. Nam, K. -S Hong, S. -J. Lim, T. -H. Kim and H.-S. Kwon, J. Phys. Chem. C. 118, 20086 (2014). https://doi.org/10.1021/jp504055j
  40. J. Liu, Y. Wen, P. A. v. Aken, J. Maier and Y. Yu, Nano Lett. 14, 6387 (2014). https://doi.org/10.1021/nl5028606
  41. Q. Liu, Y. Zhou, J. Kou, X. Chen, Z. Tian, J. Gao, S. Yan and Z. Zou, J. Am. Chem. Soc. 132, 14385 (2010). https://doi.org/10.1021/ja1068596
  42. Z. Li, Y. Zhou, C. Bao, G. Xue, J. Zhang, J. Liu, T. Yuab and Z. Zou, Nanoscale. 4, 3490 (2012). https://doi.org/10.1039/c2nr30279a

Acknowledgement

Supported by : Korea university, Hoseo University