Comparative Cycling Performance of Zn2GeO4 and Zn2SnO4 Nanowires as Anodes of Lithium- and Sodium Ion Batteries

Zn2GeO4와 Zn2SnO4 나노선의 리튬 및 소듐 이온전지 성능 비교 연구

Lim, Young Rok;Lim, SooA;Park, Jeunghee;Cho, Won Il;Lim, Sang Hoo;Cha, Eun Hee

  • Received : 2015.08.28
  • Accepted : 2015.11.25
  • Published : 2015.11.30


High-yield zinc germanium oxide ($Zn_2GeO_4$) and zinc tin oxide ($Zn_2SnO_4$) nanowires were synthesized using a hydrothermal method. We investigated the electrochemical properties of these $Zn_2GeO_4$ and $Zn_2SnO_4$ nanowires as anode materials of lithium ion battery and sodium ion battery. The $Zn_2GeO_4$ and $Zn_2SnO_4$ nanowires showed excellent cycling performance of the lithium ion battery, with a maximum capacity of 1021 mAh/g and 692 mAh/g after 50 cycles, respectively, with a high Coulomb efficiency of 98 %. For the first time, we examined the cycling performance of $Zn_2GeO_4$ and $Zn_2SnO_4$ nanowires for sodium ion batteries. The maximum capacity is 168 mAh/g and 200 mAh/g after 50 cycles, respectively, with a high Coulomb efficiency of 97%. These nanowires are expected as promising electrode materials for the development of high-performance lithium ion batteries as well as sodium ion batteries.


Zinc germanium oxide;Zinc tin oxide;Hydrothermal method;Lithium ion battery;Sodium ion battery


  1. R. Z. Hu, H. Liu and J. W. Liu, Chin. Sci. Bull. 57, 4119 (2012).
  2. X. L. Wu, Y. G. Guo and L. J. Wan, Chem. Asian J. 8, 1948 (2013).
  3. J. D. Ocon, J. K. Lee and J. Lee, Appl. Chem. Eng. 25, 1 (2014).
  4. M. R. St. John, A. J. Furgala and A. F. Sammells, J. Electrochem. Soc. 129, 246 (1982).
  5. J. Graetz, C. C. Ahn, R. Yazami and B. Fultz, J. Electrochem. Soc.151, A698 (2004).
  6. R. A, Higgns, J. Power Sources. 81-82, 13 (1999).
  7. M. Winter and J. O. Besenhard, Electrochim. Acta 45, 31 (1999).
  8. J.K. Feng, M.O. Lai and L. Lu, Electrochem Commun. 13, 287 (2011)
  9. R. Yi, J. Feng, D. Lv, M. L. Gordin, S. Chen, D. Choi and D. Wang, Nano Energy. 2, 498 (2013).
  10. F. Zou, X. Hu, Y. Sun, W. Luo, F. Xia, L. Qie, Y. Jiang and Y. Huang, Chem. Eur. J. 19, 6027 (2013).
  11. W. Li, X. Wang, B. Liu, J. Xu, B. Liang, T. Luo, S. Luo, D. Chen and G. Shen, Nanoscale. 5, 10291 (2013).
  12. F. Zou, X. Hu, L. Qie, Y. Jiang, X. Xiong, Y. Qiao and Y. Huang, Nanoscale. 6, 924 (2014).
  13. W. Chen, L. Lu, S. Maloney, Y. Yang and W. Wang, Phys. Chem. Chem. Phys. 17, 5109 (2015).
  14. A. Rong, X. P. Gao, G. R. Li, T. Y. Yan, H. Y. Zhu, J. Q. Qu and D. Y. Song, J. Phys. Chem. B. 110, 14754 (2006).
  15. X. J. Zhu, L. M. Geng, F. Q. Zhang, Y. X. Liu and L. B. Cheng, J. Power. Sources. 189, 828 (2009).
  16. X. Hou, Q. Cheng, Y. Bai and W. F. Zhang, Solid State Ionics. 181, 631 (2010).
  17. S. M. Becker, M. Scheuermann, V. Sepelak, A. EichhOfer, D. Chen, R. MOnig, A. S. Ulrich, d. H. Hahnab and S. Indris, Phys. Chem. Chem. Phys. 13, 19624 (2011).
  18. N. Feng, S. Peng, X. Sun, L. Qiao, X. Li, P. Wang, D. Hu and D. He, Mater Lett. 76, 66 (2012).
  19. K. Kim, A. Annamalai, S. H. Park, T. H. Kwon, M. W. Pyeon, M. J. Lee, Electrochim Acta. 76, 192 (2012).
  20. W. Song, J. Xie, S. Liu, G. Cao, T. Zhu and X. Zhao, J. Mater. Res. 28, 24 (2012).
  21. X. Zheng, Y. Li, Y. Xu, Z. Hong and M. Wei, CrystEng Comm. 14, 2112 (2012).
  22. Y. Zhao, Y. Huang, Q. Wang, K. Wang, M. Zong, L. Wang, W. Zhang and X. Sun, RSC Adv. 3, 14480 (2013).
  23. C. T. Cherian, M. Zheng, M. V. Reddy, B. V. R. Chowdari, and C. H. Sow, ACS Appl. Mater. Interfaces. 5, 6054 (2013).
  24. W. Song, J. Xie, W. Hu, S. Liu, G. Cao, T. Zhu and X. Zhao, J. Power. Sources. 229, 6 (2013).
  25. H. Huang, Y. Huang, M. Wang, X. Chen, Y. Zhao, K. Wang and H. Wu, Electrochim Acta. 147, 201 (2014).
  26. H. Fan, Z. Liu, J. Yang, C. Wei, J. Zhang, L. Wu and We. Zheng, RSC Adv. 4, 49806 (2014).
  27. Y. Zhao, Y. Huang, X. Sun, H. Huang, K. Wang, M. Zong and Q. Wang, Electrochim Acta. 120, 128 (2014).
  28. K Wang, Y. Huangn, H. Huang, Y. Zhao, X. Qin, X. Sun and Y. Wang, Ceram Int. 40, 8021 (2014).
  29. R. Zhang, Y. He and L. Xu, J. Mater. Chem. A. 2, 17979 (2014).
  30. K. Wang, Y. Huangn, T. Han, Y. Zhao, H. Huang and L. Xue, Ceram Int. 40, 2359 (2014).
  31. T. Jiang, X. Tian, H. Gu, H. Zhu and Y Zhou, J. Alloys Compd. 639, 239 (2015).
  32. C. Yan, J. Yang, Q. Xie, Z. Lu, B. Liu, C. Xie, S. Wu, Y Zhang and Y. Guan, Mater Lett. 138, 120 (2015).
  33. L. Qin, S. Liang, A. Pan and X. Tan, Mater Lett. 141, 255 (2015).
  34. B. -Y. Wang, H. -Y. Wang, Y. -L. Ma, X. -H. Zhao, W. Qi and Q. -C. Jiang, J. Power. Sources. 281, 341 (2015).
  35. Z. Li, J. Ding and D. Mitlin, Acc. Chem. Res. 48, 1657 (2015).
  36. L. Baggetto, J. K. Keum , J. F. Browning , G. M. Veith, Electrochem Commu. 34, 41 (2013).
  37. A. Kohandehghan, K. Cui, M. Kupsta, J. Ding, E. M. Lotfabad, W. P. Kalisvaart and D. Mitlin, Nano Lett. 14, 5873 (2014).
  38. Y. Xu , Y. Zhu, Y. Liu and C. Wang, Adv. Energy Mater. 3, 128 (2013).
  39. D. -H. Nam, K. -S Hong, S. -J. Lim, T. -H. Kim and H.-S. Kwon, J. Phys. Chem. C. 118, 20086 (2014).
  40. J. Liu, Y. Wen, P. A. v. Aken, J. Maier and Y. Yu, Nano Lett. 14, 6387 (2014).
  41. Q. Liu, Y. Zhou, J. Kou, X. Chen, Z. Tian, J. Gao, S. Yan and Z. Zou, J. Am. Chem. Soc. 132, 14385 (2010).
  42. Z. Li, Y. Zhou, C. Bao, G. Xue, J. Zhang, J. Liu, T. Yuab and Z. Zou, Nanoscale. 4, 3490 (2012).


Supported by : Korea university, Hoseo University