Bone Formation Effect of the RGD-bioconjugated Mussel Adhesive Proteins Composite Hydroxypropyl Methylcellulose Hydrogel Based Nano Hydroxyapatite and Collagen Membrane in Rabbits

Kim, Dong-Myong;Kim, Hyun-Cho;Yeun, Chang-Ho;Lee, Che-Hyun;Lee, Un-Yun;Lim, Hun-Yu;Chang, Young-An;Kim, Young-Dae;Choi, Sung-Ju;Lee, Chong-Suk;Cha, Hyung Joon

  • Received : 2015.12.14
  • Accepted : 2016.01.14
  • Published : 2015.12.31


Injectable RGD-bioconjugated Mussel Adhesive Proteins (RGD-MAPs) composite hydroxypropyl methylcellulose (HPMC) hydrogels provide local periodontal tissue for bone filling in periodontal surgery. Previously we developed a novel type of injectable self-supported hydrogel (2 mg/ml of RGD-MAPs/HPMC) based porcine nano hydroxyapatite (MPH) for dental graft, which could good handling property, biodegradation or biocompatibility with the hydrogel disassembly and provided efficient cell adhesion activity and no inflammatory responses. Herein, the aim of this work was to evaluate bone formation following implantation of MPH and collagen membrane in rabbit calvarial defects. Eight male New Zealand rabbits were used and four circular calvarial defects were created on each animal. Defects were filled with different graft materials: 1) collagen membrane, 2) collagen membrane with MPH, 3) collagen membrane with bovine bone hydroxyapatite (BBH), and 4) control. The animals were sacrificed after 2 and 8 weeks of healing periods for histologic analysis. Both sites receiving MPH and BBH showed statistically increased augmented volume and new bone formation (p < 0.05). However, there was no statistical difference in new bone formation between the MPH, BBH and collagen membrane group at all healing periods. Within the limits of this study, collagen membrane with MPH was an effective material for bone formation and space maintaining in rabbit calvarial defects.


bone formation;RGD-bioconjugated mussel adhesive protein;hydroxypropyl methylcellulose;hydrogel based nano hydroxyapatite;collagen membrane;calvaria


  1. Darby, I. 2011. Periodontal materials. Aust. Dent. J., 56, 107-118.
  2. Sculean, A., Nikolidakis, D. and Schwarz F. 2008. Regeneration of periodontal tissues: combinations of barrier membranes and grafting materials - biological foundation and preclinical evidence: a systematic review. J. Clin. Periodontol. 35, 106-116.
  3. Nkenke, E. and Stelzle, F. 2009. Clinical outcomes of sinus floor augmentation for implant placement using autogenous bone or bone substitutes: a systematic review. Clin. Oral Implan. Res. 20, 124-133.
  4. Chiapasco, M. and Zaniboni, M. 2009. Clinical outcomes of GBR procedures to correct peri-implant dehiscences and fenestrations: a systematic review. Clin. Oral Implan. Res. 20, 113-123.
  5. Wang, H. L., Greenwell, H. and Fiorellini, J. 2005. Periodontal regeneration. J. Periodontol. 76, 1601-1622.
  6. Hoexter, D. L. 2002. Bone regeneration graft materials. J. Oral Implant. 28, 290-294.<0290:BRGM>2.3.CO;2
  7. Marx, R. E. 1994. Clinical application of bone biology to mandibular and maxillary reconstruction. Clin. Plast. Surg. 21, 377-392.
  8. Schwartz, Z., Somers A. and Mellonig J.T. 1998. Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation is dependent on donor age but not gender. J. Periodontol. 69, 470-478.
  9. Reynolds, M. A., Aichelmann-Reidy, M. E., Branch-Mays, G. L. and Gunsolley, J. C. 2003. The efficacy of bone replacement grafts in the treatment of periodontal osseous defects. Annals of Periodontology/The American Academy of Periodontology 8, 227-265.
  10. Ducheyne, P. and Qiu, Q. 1999. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials 20, 2287-2303.
  11. Pinholt, E. M., Bang, G. and Haanaes, H. R. 1991. Alveolar ridge augmentation in rats by Bio-Oss. Scand. J. Dent. Res. 99, 154-161.
  12. Haas, R., Mailath, G., Dortbudak, O. and Watzek, G. 1998. Bovine hydroxyapatite for maxillary sinus augmentation: analysis of interfacial bond strength of dental implants using pull-out tests. Clin. Oral Implan. Res. 9, 117-122.
  13. Kim, Y., Nowzari, H. and Rich, S. K. 2011. Risk of prion disease transmission through bovine-derived bone substitutes. Clin. Implant Dent. R. 15, 120-130.
  14. Kim, S. H., Shin, J. W. and Park, S. A. 2004. Chemical, structural properties, and osteoconductive effectiveness of bone block derived from porcine cancellous bone. J. Biomed. Mater. Res. B, Applied biomaterials 68, 69-74.
  15. Park, J. W., Ko, H. J., Jang, J. H., Kang, H. and Suh, J. Y. 2012. Increased new bone formation with a surface magnesium-incorporated deproteinized porcine bone substitute in rabbit calvarial defects. J. Biomed. Mater. Res. A 100, 834-840.
  16. Pagliani, L., Andersson, P. and Lanza, M. 2012. A collagenated porcine bone substitute for augmentation at Neoss implant sites: a prospective 1-year multicenter case series study with histology. Clin. Implant Dent. R. 14, 746-758.
  17. Orsini, G., Scarano, A., Piattelli, M., Piccirilli, M., Caputi, S. and Piattelli, A. 2006. Histologic and ultrastructural analysis of regenerated bone in maxillary sinus augmentation using a porcine bone-derived biomaterial. J. Periodontol. 77, 1984-1990.
  18. Barone, A., Crespi, R., Aldini, N. N., Fini, M., Giardino, R. and Covani, U. 2005. Maxillary sinus augmentation: histologic and histomorphometric analysis. Int. J. Oral Max. Impl. 20, 519-525.
  19. Kim, D. M., Kim, H. J., Kang, H. C., Ahn, H. C., Kim, Y. M., Kim, H. S., Ahn, J. S., Jun, S. H., Choi, B. H. and Cha, H. J. 2014. Comparison with bone formation effect of different xenograft materials in calvarial bone defect in rabbits. J. Korean Dent. Sci. 114, 78-83.
  20. Kim, D. M., Kim, H. J., Kang, H. C., Kim, H. S. and Lee J. H. 2014. Development of advanced dental porcine cancellous bone graft with nano hydroxyapatite surface treatment (The Graft-HA NPs) and biocompatibility evaluation in calvarial bone defect in rabbit. Biomater. Res. 36, 45-56.
  21. Kim, D. M., Kim, H. J., Kang, H. C., Kim, H. S., Kim, D. H., Kim, K. I., Yun, S. Y., Han, K. H., Kim, J. Y. and Lee, J. H. 2014. A method to improve the biological activity of porcine bone graft materials by chemically attaching hydroxyapatite nanoparticles (HA NPs) with different shapes on the material surface for dental applications. J. Biomed. Eng. Res. 55, 87-94.
  22. Kim, D. M., Kim, H. J., Kang, H. C., Kim, H. S. and Lee, J. H. 2014. Method of funtionalize surface of bone graft with bone nano particle and bone graft having funtionalized surface by bone nano particle. Kor. Patent. No. 10-2014-0078335, 1-28.
  23. Kim, D. M., Kim, H. J., Kang, H. C., Kim, H. S., Kim, D. H., Kim, K. I., Yun, S. Y., Han, K. H., Kim, J. Y. and Lee, J. H. 2014. A method for preparing a porcine bone graft with an excellent performance in cell adhesion and bone formation using nano hydroxyapatite surface modification technology, and a porcine bone graft prepared thereby. Kor. Patent. No. 10-2014-0078335, 1-30.
  24. Kim, D. H., Kim, K. I., Yoon, S. Y., Kim, H. J., Ahn, J. S., Jun, S. H., Kang, H. C., Pang, C. H., Kim, J. Y., Cha, H. J., Han, K. H., Kim, D. M. and Lee, J. H. 2015. Dental hetero-graft materials with nano hydroxyapatite surface treatment. J. Nanosci. Nanotechno. 15, 7942-7949.
  25. Scarano, A., Piattelli, A. and Assenza, B. 2010. Porcine bone used in sinus augmentation procedures: a 5-year retrospective clinical evaluation. J. Oral Maxil. Surg. 68, 1869-1873.
  26. Scarano, A., Piattelli, A., Perrotti, V., Manzon, L. and Iezzi, G. 2011. Maxillary sinus augmentation in humans using cortical porcine bone: a histological and histomorp hometrical evaluation after 4 and 6 months. Clin. Implant Dent. R. 13, 13-18.
  27. Lundgren, A. K., Sennerby, L., Lundgren, D., Taylor, A., Gottlow, J. and Nyman, S. 1997. Bone augmentation at titanium implants using autologous bone grafts and a bioresorbable barrier. An experimental study in the rabbit tibia. Clin. Oral Implan. Res. 8, 82-89.
  28. Pripatnanont, P., Nuntanaranont, T. and Vongvatcharanon, S. 2009. Proportion of deproteinized bovine bone and autogenous bone affects bone formation in the treatment of calvarial defects in rabbits. Int. J. Oral Maxillofac. Surg. 38, 356-362.
  29. Xu, S., Lin, K. and Wang, Z. 2008. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomaterials. 29, 2588-2596.
  30. Kim, D. M., Kim, H. J., Kang, H. C., Choi, J. H. and Assaf, A. G., 2014. Novel non-chemical cross-linking porcine derived collagen nanofibrous membrane (Biocover plus$$^{(R)}$$) for the sustained degradation behavior of biomolecules imaging agents and for assisting the growth of human gingival cells. Tissue Eng. Regen. Med. 45, 63-69.
  31. Waite, J. H. and Tanzer, M. L. 1981. Polyphenolic substance of Mytilus edulis-novel adhesive containing L-DOPA and hydroxyproline. Science. 212, 1038-1040.
  32. Dove, J. and Sheridan, P. 1986. Adhesive protein from mussels: possibilites for dentistry, medicine, and industry. J. Am. Dent. Assoc. 112, 879-877.
  33. Lee, H., Dellatore, S. M., Miller, W. M. and Messersmith, P.B. 2007. Mussel-inspired surface chemistry for multifunctional coatings. Science. 318, 426-430.
  34. Kim, D. M., Kang, H. C., Ahn, J. S., Jun, S. H., Choi, B. H., Cha, H. J., Kim, J. E. and Choi, J. H. 2015. Formulation of a smart released HPMC drug delivery system (Cell Binder$$^{(R)}$$) containing Mussel adhesive proteins (MAPs) and porcine bone graft (The Graft$$^{(R)}$$) for use in the treatment of periodontal disease and tissue regeneration. Tissue Eng. Regen. Med. 46, 67-73.
  35. Hwang, D. S., Gim, Y., Yoo, H. J. and Cha, H. J. 2007. Practical recombinant hybrid mussel bioadhesive fp-151. Biomaterials. 28, 3560-3568.
  36. Hwang, D. S., Sim, S. B., and Cha, H. J. 2007. Cell adhesion biomaterial based on mussel adhesive protein fused with RGD peptide. Biomaterials. 28, 4039-4046.
  37. Colombo, P. 1993. Swelling-controlled release in hydrogel matrices for oral route. Adv. Drug Deliver. Rev. 11, 37-57.
  38. Doelker, E. 1986. Water-swollen cellulose derivatives in pharmacy. in: N.A. Peppas (Ed.). Hydrogels in Medicine and Pharmacy. 2, 115-160.
  39. Brannon-Peppas, L. 1990. Preparation and characterization of cross-linked hydrophilic networks. Absorbent Polymer Technology. 23, 45-66.
  40. Stankewich, C. J., Swiontkowski, M. F., Tencer. A. F., Yetkinler, D. N. and Poser, R. D. 1996. Augmentation of femoral neck fracture fixation with an injectable calcium-phosphate bone mineral cement. J. Orthop. Res. 14, 786-793.
  41. Weiss, P., Gauthier, O., Bouler, J., Grimandi, G., and Daculsi, G. 1999. Injectable bone substitute using a hydrophilic polymer. Bone. 25, 67S-70S.
  42. Kim, D. M., Kim, H. J., Kang, H. C., Ahn, H. C., Kim, Y. M., Kim, H. S., Ahn, J. S., Jun, S. H., Choi, B. H. and Cha, H. J. 2014. Comparison of Bone Repair Treated with mussel adhesive protein (MAPs) nanofibrous porcine graft (Cell-Binder$$^{(R)}$$) in rat calvaria. J. Biomed. Eng. Res. 58, 58-66.
  43. Kim, D. M., Kim, H. J., Kang, H. C., and Cha, H. J. 2015. Mussel adhesive protein-derived bone binder for preventing or treating periodontal disease and method for preparing the same. Kor. Patent. No. 10-2015-0061487, 1-37.
  44. Kim, D. M., Kim, H. J., Kang, H. C., Ahn, H. C., Kim, Y. M., Kim, H. S., Ahn, J. S., Jun, S. H., Choi, B. H. and Cha, H. J. 2014. Histological study on the comparison of bone repair treated with novel mussel adhesive protein (MAPs) nanofibrous composited of porcine graft (Cell-Binder$$^{(R)}$$) or not with two different grafts (Bio-Oss$$^{(R)}$$ and The Graft$$^{(R)}$$) in rat calvaria. J. Periodontal Res. 128, 121-129.
  45. Sohn, J. Y., Park, J. C. and Um, Y. J. 2010. Spontaneous healing capacity of rabbit cranial defects of various sizes. J. Periodontal Implant Sci. 40, 180-187.
  46. Misch, C. E. 1999. Contemporary Implant Dentistry, 2nd ed; Mosby, St. Louis. Implant Dent. 1, 320-330.
  47. Yoo, K. H., Shim, K. M., Park, H. J. and Choi, S, H. 2010. Effect of porcine cancellous bones on regeneration in rats with calvarial defect. J. Life Sci. 20, 1207-1213.
  48. Stavropoulos, A., Kostopoulos, L., Nyengaard, J. R. and Karring, T. 2003. Deproteinized bovine bone (Bio-Oss$$^{(R)}$$) and bioactive glass (Biogran$$^{(R)}$$) arrest bone formation when used as an adjunct to guided tissue regeneration (GTR): an experimental study in the rat. J. Clin. Periodontol. 30, 636-643.
  49. Sela, M. N., Kohavi, D., Krausz, E., Steinberg, D. and Rosen, G. 2003. Enzymatic degradation of collagen-guided tissue regeneration membranes by periodontal bacteria. Clin. Oral Implan. Res. 14, 263-268.
  50. Charulatha, V. and Rajaram, A. 2003. Influence of different crosslinking treatments on the physical properties of collagen membranes. Biomaterials. 24, 759-767.
  51. Becker, J., Al-Nawas, B., Klein, M. O., Schliephake, H., Terheyden, H. and Schwarz, F. 2009. Use of a new cross-linked collagen membrane for the treatment of dehiscence-type defects at titanium implants: a prospective, randomized-controlled double-blinded clinical multicenter study. Clin. Oral Implan. Res. 20, 742-749.


Grant : 해양수산바이오신소재 개발

Supported by : 포항공과대학교 산학협력단