DOI QR코드

DOI QR Code

Oxygen-Silver Junction Formation for Single Molecule Conductance

Jo, Han Yeol;Yoo, Pil Sun;Kim, Taekyeong

  • Received : 2014.10.27
  • Accepted : 2014.11.19
  • Published : 2015.02.20

Abstract

We use a scanning tunneling microscope based break-junction technique to measure the conductance of a 4,4'-dimethoxybiphenyl molecular junction formed with Ag and Au electrodes. We observe the formation of a clear molecular junction with Ag electrodes that result from stable Ag-oxygen bonding structures. However we have no molecular bonding formation when using Au electrodes, resulting in a tunneling current between the top and bottom metal electrodes. We also see a clear peak in the conductance histogram of the Ag-oxygen molecular junctions, but no significant molecular features are seen with Au electrodes. Our work should open a new path to the conductance measurements of single-molecule junctions with oxygen linkers.

Keywords

STM break-junction;Single molecule electronics;Oxygen;Ag electrodes

References

  1. Kaneko, S.; Nakazumi, T.; Kiguchi, M. J. Phys. Chem. Lett. 2010, 1, 3520. https://doi.org/10.1021/jz101506u
  2. Kamenetska, M.; Koentopp, M.; Whalley, A. C.; Park, Y. S.; Steigerwald, M. L.; Nuckolls, C.; Hybertsen, M. S.; Venkataraman, L. Phys. Rev. Lett. 2009, 102, 126803. https://doi.org/10.1103/PhysRevLett.102.126803
  3. Kamenetska, M.; Quek, S. Y.; Whalley, A. C.; Steigerwald, M. L.; Choi, H. J.; Louie, S. G.; Nuckolls, C.; Hybertsen, M. S.; Neaton, J. B.; Venkataraman, L. J. Am. Chem. Soc. 2010, 132, 6817. https://doi.org/10.1021/ja1015348
  4. Xu, B.; Tao, N. J. Science 2003, 301, 1221. https://doi.org/10.1126/science.1087481
  5. Kruger, D.; Fuchs, H.; Rousseau, R.; Marx, D.; Parrinello, M. Phys. Rev. Lett. 2002, 89, 186402. https://doi.org/10.1103/PhysRevLett.89.186402
  6. Houck, A. A.; Labaziewicz, J.; Chan, E. K.; Folk, J. A.; Chuang, I. L. Nano Lett. 2005, 5, 1685. https://doi.org/10.1021/nl050799i
  7. Rubio, G.; Agrait, N.; Vieira, S. Phys. Rev. Lett. 1996, 76, 2302. https://doi.org/10.1103/PhysRevLett.76.2302
  8. Quek, S. Y.; Venkataraman, L.; Choi, H. J.; Louie, S. G.; Hybertsen, M. S.; Neaton, J. B. Nano Lett. 2007, 7, 3477. https://doi.org/10.1021/nl072058i
  9. Kim, T.; Vazquez, H.; Hybertsen, M. S.; Venkataraman, L. Nano Lett. 2013, 13, 3358. https://doi.org/10.1021/nl401654s
  10. Qi, Y.; Guan, D.; Jiang, Y.; Zheng, Y.; Liu, C. Phys. Rev. Lett. 2006, 97, 256101. https://doi.org/10.1103/PhysRevLett.97.256101
  11. Thijssen, W. H. A.; Marjenburgh, D.; Bremmer, R. H.; van Ruitenbeek, J. M. Phys. Rev. Lett. 2006, 96, 026806. https://doi.org/10.1103/PhysRevLett.96.026806
  12. Jelínek, P.; Pérez, R.; Ortega, J.; Flores, F. Phys. Rev. B 2008, 77, 115447. https://doi.org/10.1103/PhysRevB.77.115447
  13. Bao, X.; Muhler, M.; Schedel-Niedrig, T.; Schlögl, R. Phys. Rev. B 1996, 54, 2249. https://doi.org/10.1103/PhysRevB.54.2249
  14. Boronin, A. I.; Koscheev, S. V.; Zhidomirov, G. M. J. Electron. Spectrosc. Relat. Phenom. 1998, 96, 43. https://doi.org/10.1016/S0368-2048(98)00221-7
  15. Prince, K. C.; Paolucci, G.; Bradshaw, A. M. Surf Sci. 1986, 175, 101. https://doi.org/10.1016/0039-6028(86)90086-5
  16. Park, Y. S.; Whalley, A. C.; Kamenetska, M.; Steigerwald, M. L.; Hybertsen, M. S.; Nuckolls, C.; Venkataraman, L. J. Am. Chem. Soc. 2007, 129, 15768. https://doi.org/10.1021/ja0773857
  17. Venkataraman, L.; Klare, J. E.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Nature 2006, 442, 904. https://doi.org/10.1038/nature05037
  18. Venkataraman, L.; Klare, J. E.; Tam, I. W.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Nano Lett. 2006, 6, 458. https://doi.org/10.1021/nl052373+
  19. Mishchenko, A.; Vonlanthen, D.; Meded, V.; Bürkle, M.; Li, C.; Pobelov, I. V.; Bagrets, A.; Viljas, J. K.; Pauly, F.; Evers, F.; Mayor, M.; Wandlowski, T. Nano Lett. 2009, 10, 156.

Acknowledgement

Supported by : Hankuk University of Foreign Studies