DOI QR코드

DOI QR Code

Quantum Chemical Studies of Some Sulphanilamide Schiff Bases Inhibitor Activity Using QSAR Methods

  • Baher, Elham ;
  • Darzi, Naser ;
  • Morsali, Ali ;
  • Beyramabadi, Safar Ali
  • Received : 2015.03.27
  • Accepted : 2015.09.04
  • Published : 2015.12.20

Abstract

The different calculated quantum chemical descriptors by DFT method were used for prediction of some sulphanilamide Schiff bases inhibitor activity as a binding constant (log K). Multiple linear regression (MLR) and artificial neural network (ANN) were employed for developing the useful quantitative structure activity relationship (QSAR) model. The obtained results presented superiority of ANN model over the MLR one. The offering QSAR model is very easy to computation and Physico-Chemically interpretable. Sensitivity analysis was used to determine the relative importance of each descriptor in ANN model. The order of importance of each descriptor according to this analysis is: molecular volume, molecular weight and dipole moment, respectively. These descriptors appear good information related to different structure of sulphanilamide Schiff bases can participate in their inhibitor activity.

Keywords

Sulphanilamide Schiff bases;QSAR;DFT

References

  1. Badger, M.; Price, G. Annu. Rev. Plant Physiol. Plant Mol. Bio. 1994, 45, 369. https://doi.org/10.1146/annurev.pp.45.060194.002101
  2. Supuran, C. T.; Winum, J. Y. (Eds.). Drug Design of Zinc-Enzyme Inhibitors: Functional, Structural, and Disease Applications; John Wiley & Sons: U.S.A., 2009.
  3. Beal, M. T.; Hagan, H. B.; Demuth, M. Neural Network Design; PWS: U.S.A., 1996.
  4. Bose, N. K; Liang, P. Neural Network-Fundamentals; McGraw-Hill: U.S.A., 1996.
  5. Patterson, D. W. Artificial Neural Networks: Theory and Applications; Prentice Hall: U.S.A., 1996.
  6. Fatemi, M. H.; Baher, E. SAR QSAR Environ. Res. 2009, 20, 77. https://doi.org/10.1080/10629360902726700
  7. SPSS/PC, Statistical Package for IBMPC, Quiad software,Ontario, 1986.
  8. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  9. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  10. Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb,M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci,B.; Petersson, G.; Wallingford, CT. 2009.
  11. Supuran, C. T.; Clare, B. W. Eur. J. Med. Chem. 1998, 33, 489. https://doi.org/10.1016/S0223-5234(98)80049-4
  12. Qiu, H. Y.; Wang, Z. C.; Wang, P. F.; Yan, X. Q.; Wang, X.M.; Yang, Y. H.; Zhu, H. L. RSC Advances. 2014, 4, 39214. https://doi.org/10.1039/C4RA06438K
  13. Singh, S.; Supuran, C. T. J. Enzyme. Inhib. Med. Chem. 2014, 29, 449. https://doi.org/10.3109/14756366.2013.800059
  14. Agrawal, V. K.; Srivastava, S.; Khadikar, P. V.; Supuran, C.T. Bioorganic Medicinal Chemistry. 2003, 11, 5353. https://doi.org/10.1016/j.bmc.2003.09.037
  15. Eroğlu, E.; Türkmen, H.; Güler, S.; Palaz, S.; Oltulu, O. Int. J. Mol. Sci. 2007, 8, 145. https://doi.org/10.3390/i8020145
  16. Eroglu, E. Int. J. Mol. Sci. 2008, 9, 181. https://doi.org/10.3390/ijms9020181
  17. Supuran, T. C.; Scozzafava, A.; Casini, A. Medicinal Research Reviews. 2003, 23, 146. https://doi.org/10.1002/med.10025
  18. Nord, L. I.; Jacobsson, S. P. Chemom. Intell. Lab. Syst. 1998, 44, 153. https://doi.org/10.1016/S0169-7439(98)00118-X
  19. Jalali-Heravi, M.; Fatemi, M. H. Anal. Chim. Acta. 2000, 415, 95. https://doi.org/10.1016/S0003-2670(00)00849-7

Cited by

  1. Thermal decomposition and kinetic analyses of sulfonamide Schiff's bases in oxygen atmosphere - A comparative study vol.9-10, 2017, https://doi.org/10.1016/j.cdc.2017.07.001