Quantum Chemical Studies of Some Sulphanilamide Schiff Bases Inhibitor Activity Using QSAR Methods

  • Baher, Elham ;
  • Darzi, Naser ;
  • Morsali, Ali ;
  • Beyramabadi, Safar Ali
  • Received : 2015.03.27
  • Accepted : 2015.09.04
  • Published : 2015.12.20


The different calculated quantum chemical descriptors by DFT method were used for prediction of some sulphanilamide Schiff bases inhibitor activity as a binding constant (log K). Multiple linear regression (MLR) and artificial neural network (ANN) were employed for developing the useful quantitative structure activity relationship (QSAR) model. The obtained results presented superiority of ANN model over the MLR one. The offering QSAR model is very easy to computation and Physico-Chemically interpretable. Sensitivity analysis was used to determine the relative importance of each descriptor in ANN model. The order of importance of each descriptor according to this analysis is: molecular volume, molecular weight and dipole moment, respectively. These descriptors appear good information related to different structure of sulphanilamide Schiff bases can participate in their inhibitor activity.


Sulphanilamide Schiff bases;QSAR;DFT


  1. Badger, M.; Price, G. Annu. Rev. Plant Physiol. Plant Mol. Bio. 1994, 45, 369.
  2. Supuran, C. T.; Winum, J. Y. (Eds.). Drug Design of Zinc-Enzyme Inhibitors: Functional, Structural, and Disease Applications; John Wiley & Sons: U.S.A., 2009.
  3. Beal, M. T.; Hagan, H. B.; Demuth, M. Neural Network Design; PWS: U.S.A., 1996.
  4. Bose, N. K; Liang, P. Neural Network-Fundamentals; McGraw-Hill: U.S.A., 1996.
  5. Patterson, D. W. Artificial Neural Networks: Theory and Applications; Prentice Hall: U.S.A., 1996.
  6. Fatemi, M. H.; Baher, E. SAR QSAR Environ. Res. 2009, 20, 77.
  7. SPSS/PC, Statistical Package for IBMPC, Quiad software,Ontario, 1986.
  8. Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
  9. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
  10. Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb,M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci,B.; Petersson, G.; Wallingford, CT. 2009.
  11. Supuran, C. T.; Clare, B. W. Eur. J. Med. Chem. 1998, 33, 489.
  12. Qiu, H. Y.; Wang, Z. C.; Wang, P. F.; Yan, X. Q.; Wang, X.M.; Yang, Y. H.; Zhu, H. L. RSC Advances. 2014, 4, 39214.
  13. Singh, S.; Supuran, C. T. J. Enzyme. Inhib. Med. Chem. 2014, 29, 449.
  14. Agrawal, V. K.; Srivastava, S.; Khadikar, P. V.; Supuran, C.T. Bioorganic Medicinal Chemistry. 2003, 11, 5353.
  15. Eroğlu, E.; Türkmen, H.; Güler, S.; Palaz, S.; Oltulu, O. Int. J. Mol. Sci. 2007, 8, 145.
  16. Eroglu, E. Int. J. Mol. Sci. 2008, 9, 181.
  17. Supuran, T. C.; Scozzafava, A.; Casini, A. Medicinal Research Reviews. 2003, 23, 146.
  18. Nord, L. I.; Jacobsson, S. P. Chemom. Intell. Lab. Syst. 1998, 44, 153.
  19. Jalali-Heravi, M.; Fatemi, M. H. Anal. Chim. Acta. 2000, 415, 95.

Cited by

  1. Thermal decomposition and kinetic analyses of sulfonamide Schiff's bases in oxygen atmosphere - A comparative study vol.9-10, 2017,