DOI QR코드

DOI QR Code

Optimization of fractionation efficiency (FE) and throughput (TP) in a large scale splitter less full-feed depletion SPLITT fractionation (Large scale FFD-SF)

대용량 splitter less full-feed depletion SPLITT 분획법 (Large scale FFD-SF)에서의 분획효율(FE)및 시료처리량(TP)의 최적화

  • Eum, Chul Hun (Geochemical Analysis Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Noh, Ahrahm (Department of Chemistry, Hannam University) ;
  • Choi, Jaeyeong (Department of Chemistry, Hannam University) ;
  • Yoo, Yeongsuk (Department of Chemistry, Hannam University) ;
  • Kim, Woon Jung (Department of Chemistry, Hannam University) ;
  • Lee, Seungho (Department of Chemistry, Hannam University)
  • Received : 2015.12.04
  • Accepted : 2015.12.15
  • Published : 2015.12.25

Abstract

Split-flow thin cell fractionation (SPLITT fractionation, SF) is a particle separation technique that allows continuous (and thus a preparative scale) separation into two subpopulations based on the particle size or the density. In SF, there are two basic performance parameters. One is the throughput (TP), which was defined as the amount of sample that can be processed in a unit time period. Another is the fractionation efficiency (FE), which was defined as the number % of particles that have the size predicted by theory. Full-feed depletion mode (FFD-SF) have only one inlet for the sample feed, and the channel is equipped with a flow stream splitter only at the outlet in SF mode. In conventional FFD-mode, it was difficult to extend channel due to splitter in channel. So, we use large scale splitter-less FFD-SF to increase TP from increase channel scale. In this study, a FFD-SF channel was developed for a large-scale fractionation, which has no flow stream splitters (‘splitter less’), and then was tested for optimum TP and FE by varying the sample concentration and the flow rates at the inlet and outlet of the channel. Polyurethane (PU) latex beads having two different size distribution (about 3~7 µm, and about 2~30 µm) were used for the test. The sample concentration was varied from 0.2 to 0.8% (wt/vol). The channel flow rate was varied from 70, 100, 120 and 160 mL/min. The fractionated particles were monitored by optical microscopy (OM). The sample recovery was determined by collecting the particles on a 0.1 µm membrane filter. Accumulation of relatively large micron sized particles in channel could be prevented by feeding carrier liquid. It was found that, in order to achieve effective TP, the concentration of sample should be at higher than 0.4%.

Keywords

SPLITT;Throughput;Fractionation efficiency;Sample recovery;Separation

References

  1. P. S. Williams, S. Levin, T. Lenczycki and J. C. Giddings, Ind. Eng. Chem. Res., 31(9), 2172-2181 (1992). https://doi.org/10.1021/ie00009a015
  2. S. Levin, M. N. Myers and J. C. Giddings, Sep. Sci. Technol., 24(14), 1245-1259 (1989). https://doi.org/10.1080/01496398908049900
  3. Y. Gao, M. N. Myers, B. N. Barman and J. Calvin Giddings, Part. Sci.Technol., 9(3-4), 105-118 (1991). https://doi.org/10.1080/02726359108906584
  4. S. R. Springston, M. N. Myers and J. Calvin Giddings, Anal. Chem., 59(2), 344-350 (1987). https://doi.org/10.1021/ac00129a026
  5. J. C. Giddings, Sep. Sci. Technol., 27(11), 1489-1504 (1992). https://doi.org/10.1080/01496399208019438
  6. J. C. Giddings, Sep. Sci. Technol., 20(9-10), 749-768 (1985). https://doi.org/10.1080/01496398508060702
  7. C. B. Fuh, M. N. Myers and J. C. Giddings, Ind. Eng. Chem. Res., 33(2), 355-362 (1994). https://doi.org/10.1021/ie00026a028
  8. M. H. Moon, S. G. Yang, J. Y. Lee and S. Lee, Anal. Bioanal. Chem., 381(6), 1299-1304 (2005). https://doi.org/10.1007/s00216-005-3068-9
  9. M. H. Moon, D. Kang, H. Lim, J. E. Oh and Y. S. Chang, Environ. Sci. Technol., 36(20), 4416-4423 (2002). https://doi.org/10.1021/es011145o
  10. F. Dondi, C. Contado, G. Blo and S. Garçia Martin, Chromatographia, 48(9-10), 643-654 (1998). https://doi.org/10.1007/BF02467594
  11. C. Contado, F. Dondi, R. Beckett and J. C. Giddings, Anal. Chim. Acta, 345(1-3), 99-110 (1997). https://doi.org/10.1016/S0003-2670(97)00073-1
  12. R. G. Keil, E. Tsamakis, C. B. Fuh, J. C. Giddings and J. I. Hedges, Geochim.Cosmochim. Acta, 58(2), 879- 893 (1994). https://doi.org/10.1016/0016-7037(94)90512-6
  13. Y. Jiang, M. E. Miller, M. E. Hansen, M. N. Myers and P. S. Williams, J. Magn. Magn. Mater., 194(1), 53-61 (1999). https://doi.org/10.1016/S0304-8853(98)00577-0
  14. Y. Jiang, A. Kummerow and M. Hansen, J. Microcolumn Sep., 9(4), 261-273 (1997). https://doi.org/10.1002/(SICI)1520-667X(1997)9:4<261::AID-MCS3>3.0.CO;2-#
  15. C. B. Fuh, E. M. Trujillo and J. C. Giddings, Sep. Sci. Technol., 30(20), 3861-3876 (1995). https://doi.org/10.1080/01496399508015148
  16. J. Zhang, P. S. William, M. N. Myers and J. C. Giddings, Sep. Sci. Technol., 29(18), 2493-2522 (1994). https://doi.org/10.1080/01496399408002205
  17. S. Levin and J. C. Giddings, J. Chem. Technol. Biotechnol., 50(1), 43-56 (1991).
  18. C. B. Fuh, M. N. Myers and J. C. Giddings, Anal. Chem., 64(24), 3125-3132 (1992). https://doi.org/10.1021/ac00048a010
  19. C. B. Fuh and J. C. Giddings, Sep. Sci. Technol., 32(18), 2945-2967 (1997). https://doi.org/10.1080/01496399708000789
  20. S. Lee, J. Y. Lee, T. W. Lee, E. C. Jung and S. K. Cho, Bull. Korean Chem. Soc., 32(12), 4291-4296 (2011). https://doi.org/10.5012/bkcs.2011.32.12.4291
  21. H. J. Choi, W. J. Kim, C. H. Eum and S. Lee, Anal. Sci. Technol., 26(1), 34-41 (2013). https://doi.org/10.5806/AST.2013.26.1.034
  22. Y. Yoo, J. Choi, W. J. Kim, C. H. Eum, E. C. Jung and S. Lee, Anal. Sci. Technol., 27(1), 34-40 (2014). https://doi.org/10.5806/AST.2014.27.1.34
  23. A. De Momi and J. R. Lead, Sci. Total Environ., 405(1- 3), 317-323 (2008). https://doi.org/10.1016/j.scitotenv.2008.05.032
  24. C. Contado and F. Dondi, J. Sep. Sci., 26(5), 351-362 (2003). https://doi.org/10.1002/jssc.200390044
  25. S. Lee, T. W. Lee, S. K. Cho, S. T. Kim, D. Y. Kang, H. Kwen, S. K. Lee and C. H. Eum, Microchem. J., 95(1), 11-19 (2010). https://doi.org/10.1016/j.microc.2009.08.005