Coherence Studies of Photons Emitted from a Single Terrylene Molecule Using Michelson and Young’s Interferometers

  • Yoon, Seung-Jin ;
  • Trinh, Cong Tai ;
  • Lee, Kwang-Geol
  • Received : 2015.10.26
  • Accepted : 2015.11.11
  • Published : 2015.12.25


Coherence length (time) is a key parameter in many classical and quantum optical applications. Two interferometers – Michelson and Young’s double-slit – are used to characterize the temporal coherence of single photons emitted from single terrylene molecules. For quantitative analysis, a dispersion-related distortion in the interference pattern of a Michelson interferometer is carefully corrected by a simple dispersion compensation. Additionally, it has been demonstrated that Young’s interferometer can be used in temporal coherence studies at the single photon level with high accuracy. The pros and cons of the two systems are discussed. The measured coherence lengths in the two systems are consistent with one another under the self-interference interpretations.


Coherence length;Single photon source;Interferometry


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
  2. O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425, DOI: 10.1038/ncomms2434 (2013).
  3. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290-293 (2000).
  4. I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74, 076501 (2011).
  5. B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68, 1129-1179 (2005).
  6. S. Scheel, “Single-photon sources - an introduction,” J. Mod. Opt. 56, 141-160 (2009).
  7. M. Santarsiero and R. Borghi, “Measuring spatial coherence by using a reversed-wavefront Young interferometer,” Opt. Lett. 31, 861-863 (2006).
  8. L. Ph. H. Schmidt, S. Schössler, F. Afaneh, M. Schöffler, K. E. Stiebing, H. Schmidt-Böcking, and R. Dörner, “Young-type interference in collisions between hydrogen molecular ions and helium,” Phys. Rev. Lett. 101, 173202 (2008).
  9. L. Mandel, “Quantum effects in one-photon and two-photon interference,” Rev. Mod. Phys. 71, S274-S282 (1999).
  10. R. Korlacki, M. Steiner, H. Qian, A. Hartschuh, and A. J. Meixner, “Optical fourier transform spectroscopy of single-walled carbon nanotubes and single molecules,” Chem. Phys. Chem. 8, 1049-1055 (2007).
  11. G. D. Marshall, T. Gaebel, J. C. F. Matthews, J. Enderlein, J. L. O'Brien, and J. R. Rabeau, “Coherence properties of a single dipole emitter in diamond,” New J. Phys. 13, 055016 (2011).
  12. V. Jacques, E. Wu, T. Toury, F. Treussart, A. Aspect, P. Grangier, and J.-F. Roch, “Single-photon wavefront-splitting interference,” Eur. Phys. J. D 35, 561-565 (2005).
  13. F. Jelezko, A. Volkmer, I. Popa, K. K. Rebane, and J. Wrachtrup, “Coherence length of photons from a single quantum system,” Phys. Rev. A 67, 041802 (2003).
  14. M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
  15. J. M. Schmitt, “Optical coherence tomography (OCT): A review,” IEEE J. Select. Topics Quantum Electron. 5, 1205-1215 (1999).
  16. K. G. Lee, “Statistical analysis of photons from a single terrylene molecule for the study of the energy level scheme,” J. Korean Phys. Soc. 64, 1792-1796 (2014).
  17. R. J. Pfab, J. Zimmermann, C. Hettich, I. Gerhardt, A. Renn, and V. Sandoghdar, “Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl,” Chem. Phys. Lett. 387, 490-495 (2004).