DOI QR코드

DOI QR Code

Coherence Studies of Photons Emitted from a Single Terrylene Molecule Using Michelson and Young’s Interferometers

  • Yoon, Seung-Jin ;
  • Trinh, Cong Tai ;
  • Lee, Kwang-Geol
  • Received : 2015.10.26
  • Accepted : 2015.11.11
  • Published : 2015.12.25

Abstract

Coherence length (time) is a key parameter in many classical and quantum optical applications. Two interferometers – Michelson and Young’s double-slit – are used to characterize the temporal coherence of single photons emitted from single terrylene molecules. For quantitative analysis, a dispersion-related distortion in the interference pattern of a Michelson interferometer is carefully corrected by a simple dispersion compensation. Additionally, it has been demonstrated that Young’s interferometer can be used in temporal coherence studies at the single photon level with high accuracy. The pros and cons of the two systems are discussed. The measured coherence lengths in the two systems are consistent with one another under the self-interference interpretations.

Keywords

Coherence length;Single photon source;Interferometry

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991). https://doi.org/10.1126/science.1957169
  2. O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425, DOI: 10.1038/ncomms2434 (2013). https://doi.org/10.1038/ncomms2434
  3. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290-293 (2000). https://doi.org/10.1103/PhysRevLett.85.290
  4. I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74, 076501 (2011). https://doi.org/10.1088/0034-4885/74/7/076501
  5. B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68, 1129-1179 (2005). https://doi.org/10.1088/0034-4885/68/5/R04
  6. S. Scheel, “Single-photon sources - an introduction,” J. Mod. Opt. 56, 141-160 (2009). https://doi.org/10.1080/09500340802331849
  7. M. Santarsiero and R. Borghi, “Measuring spatial coherence by using a reversed-wavefront Young interferometer,” Opt. Lett. 31, 861-863 (2006). https://doi.org/10.1364/OL.31.000861
  8. L. Ph. H. Schmidt, S. Schössler, F. Afaneh, M. Schöffler, K. E. Stiebing, H. Schmidt-Böcking, and R. Dörner, “Young-type interference in collisions between hydrogen molecular ions and helium,” Phys. Rev. Lett. 101, 173202 (2008). https://doi.org/10.1103/PhysRevLett.101.173202
  9. L. Mandel, “Quantum effects in one-photon and two-photon interference,” Rev. Mod. Phys. 71, S274-S282 (1999). https://doi.org/10.1103/RevModPhys.71.S274
  10. R. Korlacki, M. Steiner, H. Qian, A. Hartschuh, and A. J. Meixner, “Optical fourier transform spectroscopy of single-walled carbon nanotubes and single molecules,” Chem. Phys. Chem. 8, 1049-1055 (2007). https://doi.org/10.1002/cphc.200600739
  11. G. D. Marshall, T. Gaebel, J. C. F. Matthews, J. Enderlein, J. L. O'Brien, and J. R. Rabeau, “Coherence properties of a single dipole emitter in diamond,” New J. Phys. 13, 055016 (2011). https://doi.org/10.1088/1367-2630/13/5/055016
  12. V. Jacques, E. Wu, T. Toury, F. Treussart, A. Aspect, P. Grangier, and J.-F. Roch, “Single-photon wavefront-splitting interference,” Eur. Phys. J. D 35, 561-565 (2005). https://doi.org/10.1140/epjd/e2005-00201-y
  13. F. Jelezko, A. Volkmer, I. Popa, K. K. Rebane, and J. Wrachtrup, “Coherence length of photons from a single quantum system,” Phys. Rev. A 67, 041802 (2003). https://doi.org/10.1103/PhysRevA.67.041802
  14. M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003). https://doi.org/10.1103/PhysRevLett.91.083601
  15. J. M. Schmitt, “Optical coherence tomography (OCT): A review,” IEEE J. Select. Topics Quantum Electron. 5, 1205-1215 (1999). https://doi.org/10.1109/2944.796348
  16. K. G. Lee, “Statistical analysis of photons from a single terrylene molecule for the study of the energy level scheme,” J. Korean Phys. Soc. 64, 1792-1796 (2014). https://doi.org/10.3938/jkps.64.1792
  17. R. J. Pfab, J. Zimmermann, C. Hettich, I. Gerhardt, A. Renn, and V. Sandoghdar, “Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl,” Chem. Phys. Lett. 387, 490-495 (2004). https://doi.org/10.1016/j.cplett.2004.02.040