DOI QR코드

DOI QR Code

Design of Double-Independent-Gate Ambipolar Silicon-Nanowire Field Effect Transistor

양극성 이중 독립 게이트 실리콘 나노와이어 전계 효과 트랜지스터 설계

Hong, Seong-Hyeon;Yu, YunSeop
홍성현;유윤섭

  • Received : 2015.08.25
  • Accepted : 2015.09.30
  • Published : 2015.12.31

Abstract

We propose a new Double-Independent-Gate Ambipolar Silicon-Nanowire Field Effect Transistor(DIG Ambi-SiNWFET). The proposed transistor has two types of gate such as polarity gate and control gate. The polarity gate determines the operation that the gate bias controls NMOSFET or PMOSFET. The voltage of control gate controls the current characteristic of the transistor. We investigated systematically work functions of the two gates and source/drain to operate ambipolar current-voltage characteristics using 2D device simulator. When the work functions of polarity gate, control gate and source/drain are 4.75eV, 4.5eV, and 4.8eV, respectively, it showed the obvious ambipolar characteristics.

Keywords

Silicon nanowire transistor;tunneling;ambipolar;polarity gate;control gate;transistor design

References

  1. G. E. Moore, "Cramming more components onto integrated circuits," Electronics, vol. 38, no. 8, pp. 114-117, Apr. 1965.
  2. D. Sacchetto, Y. Leblebici, and G. D. Micheli, "Ambipolar gate-controllable SiNW FETs for configurable logic circuits with improved expressive capability," IEEE Electron Device Lett., vol. 33, no. 2, pp. 143-145, 2012. https://doi.org/10.1109/LED.2011.2174410
  3. R. A. Vega, and T.-J. K. Liu, "A Comparative Study of Dopant-Segregated Schottky and Raised Source/Drain Double-Gate MOSFETs", IEEE Trans. Electron Devices, vol. 55, no. 10, pp. 2665-2677, Oct. 2008. https://doi.org/10.1109/TED.2008.2003024
  4. M. Schwarz, T. Holtij, A. Kloes, and B. Iniguez, "2D analytical calculation of the electric field in lightly doped Schottky barrier double-gate MOSFETs and estimation of the tunneling/thermionic current", Solid-State Electronics, vol. 63, pp.119-129, 2011. https://doi.org/10.1016/j.sse.2011.05.013
  5. M. Balaguer, B. Iniguez, and J.B. Roldan, "An analytical compact model for Schottky-barrier double gate MOSFETs", Solid-State Electronics, vol. 64, pp. 78-84, 2011. https://doi.org/10.1016/j.sse.2011.06.045
  6. H. A. Vladimirescu, A. Amara, and C. Anghel, "An analysis on the ambipolar current in Si double-gate tunnel FETs", Solid-State Electronics, vol. 70, pp. 67-72, 2012. https://doi.org/10.1016/j.sse.2011.11.009
  7. M. Schwarz, T. Holtij, A. Kloes, and B. Iniguez, "Performance study of a Schottky barrier double-gate MOSFET using a two-dimensional analytical model", IEEE Trans. Electron Devices, vol. 60, no. 2, pp. 884-886, Feb. 2013. https://doi.org/10.1109/TED.2012.2235146
  8. G. Zhu, X. Zhou, Y.-K. Chin, K. L. Pey, J. Zhang, G. H. See, S. Lin, Y. Yan, and Z. Chen, "Subcircuit compact model for dopant-segregated Schottky gate-all-around Si-Nanowire MOSFETs", IEEE Trans. Electron Devices, vol. 57, no. 4, pp. 772-781, Apr. 2010. https://doi.org/10.1109/TED.2010.2041513
  9. G. Zhu, X. Zhou, T. S. Lee, L. K. Ang, G. H. See, S. Lin, Y.-K. Chin, and K. L. Pey, "A Compact Model for Undoped Silicon-Nanowire MOSFETs With Schottky- Barrier Source/Drain", IEEE Trans. Electron Devices, vol. 56, no. 5, pp. 1100-1109, May 2009. https://doi.org/10.1109/TED.2009.2015161
  10. D. Sacchetto, V. Savu, G. D. Micheli, J. Brugger, and Y. Leblebici, "Ambipolar silicon nanowire FETs with stenciled-deposited metal gate," Microelectron Eng., vol. 88, pp. 2732-2735, 2011. https://doi.org/10.1016/j.mee.2010.12.117
  11. M. De Marchi, D. Sacchetto, S. Frache, J. Zhang, P.-E. Gaillardon, Y. Leblebici, and G. De Micheli, "Polarity Control in Double-Gate, Gate-All-Around Vertically Stacked Silicon Nanowire FETs," in Proc. IEEE IEDM, Dec. 2012, pp. 183-186.
  12. J. L. Padilla, L. Knoll, F. Gamiz, Q. T. Zhao, A. Godoy, and S. Mantl, "Simulation of Fabricated 20-nm Schottky Barrier MOSFETs on SOI: Impact of Barrier Lowering", IEEE Trans. Electron Devices, vol. 59, no. 5, pp. 1320-1327, 2012. https://doi.org/10.1109/TED.2012.2187657
  13. ATLAS User's Manual Device Simulation Software, SILVACO, Inc., Santa Clara, CA, Nov 10, 2014.
  14. K. Matsuzawa, K. Uchida, and A. Nishiyama, "A Unified Simulation of Schottky and Ohmic Contacts" IEEE Trans. Electron Devices, vol. 47, no. 1, pp. 103-108, 2000. https://doi.org/10.1109/16.817574

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)