DOI QR코드

DOI QR Code

Effect of Operating Condition Change on the Conversion Efficiency of TWC with HCNG Engine

운전조건 변화가 HCNG 엔진용 삼원촉매 전환효율에 미치는 영향

Kim, Chang-Gi;Lee, Sung-Won;Yi, Ui-Hyung;Park, Cheol-Woong;Lee, Sun-Youp;Choi, Young;Lee, Jang-Hee
김창기;이성원;이의형;박철웅;이선엽;최영;이장희

  • Received : 2015.11.02
  • Accepted : 2015.12.24
  • Published : 2015.12.31

Abstract

Stoichiometric combustion engine with Three-way catalyst had an advantage that can reduce the harmful emissions effectively. Fuel equivalence ratio controlled from engine is very important because Fuel equivalence ratio with high conversion efficiency was narrow. This study analyzed the conversion efficiency under whole range of operating area for to evaluate the performance of three-way catalyst. In order to identify the Optimum conversion efficiency, the conversion efficiency due to change the control value of fuel equivalence ratio was investigated. The result show that conversion efficiency of emissions(more than 95%) has discovered by means of fuel equivalence ratio control at each test condition. As engine power increases, optimal fuel equivalence ratio tended to increase linearly under operating conditions of similar exhaust gas temperature.

Keywords

HCNG(Hydrogen- Compressed Natural gas Blends);stoichiometric;TWC(Three-way Catalyst);conversion efficiency;equivalence ratio

References

  1. Kallinen, K.,Harkonen, M. and Pitkanen, M., "Advanced Catalysts for CNG-Engines", SAE Technical paper, 2004-25-0028 (2004)
  2. Khan, M. I., Yasmin, T. and Shakoor, A., "Technical Overview of Compressed Natural Gas (CNG) as a Transportation Fuel", Renewable and Sustainable Energy Revieews, 51, 785-797, (2015) https://doi.org/10.1016/j.rser.2015.06.053
  3. Schoengaber, J., Richter, J. M., Despres, J., Schmidt, M., Spiess, S. and Roesch, M., "Advanced TWC Technology to Cover Future Emission", SAE Technical paper, 2015-01-0999 (2015)
  4. Alger, T., Gingrich, J. and Mangold, B., "The Effect of Hydrogen Enrichment on EGR Tolerance in Spark Ignited Engines", SAE Technical paper, 2007-01-0475 (2007)
  5. Jilakara, S, Vaithianathan, J. V., Natarajan, S., Ramakrishnan, V, R., Subash, G. P. and Abraham, M., "An Experimental Study of Turbocharged Hydrogen Fuelled Internal Combustion Engine", SAE Technical paper, 2015-26-0051 (2007)
  6. Hu, E. and Huang, Z., "Optimization on Ignition Timing and EGR Ratio of a Spark-Ignition Engine Fuelled with Natural GasHydrogen Blends", SAE Technical paper, 2011-01-0918 (2011)
  7. Lee, S. W., Lee, U, H., Lee, S, Y., Choi, Y. and Kim, C, G., " A Study on the Applicablity of Piston for Stoichiometric HCNG engine", KIGAS Spring conference, 7, 9-9 (2015)
  8. Saanum, I., Bysveen M., Tunestal,P., Johansson, B. "Lean Burn Versus Stoichiometric operation with EGR and 3-way Catalyst of an Engine Fueled with Natural Gas and Hydrogen-enriched Natural Gas", SAE Technical paper, 2007-01-0015 (2007)
  9. Choi, B, C., "Development of Catalyst for Natural Gas Fueled Vehicle", Journal of the Korean Society of Automotive Engineers, 17(2), 1-6, (1995)
  10. Park, C. W., Kim, C. G., Choi, Y. and Won, S. H., "The Influence of Hydrogen on the Performance and Emission Characteristics of a Heavy Duty Natural Gas Engine" International Journal of Hydrogen Energy, 36(5), 3739-3745, (2011) https://doi.org/10.1016/j.ijhydene.2010.12.021

Acknowledgement

Grant : Post EURO-6 대응 시내버스용 수소-천연가스 혼합연료 (HCNG) 엔진 개발

Supported by : 친환경자동차기술계발사업단