DOI QR코드

DOI QR Code

Electrochemical gas sensor based on Pt-Ru-Mo/MWNT electrocatalysts and vinyl ionic liquids as electrolyte

  • Ju, Dong-Woo ;
  • Choi, Seong-Ho
  • Received : 2014.10.08
  • Accepted : 2015.02.06
  • Published : 2015.02.25

Abstract

We prepared a novel electrochemical gas sensor (EG sensor) based on interdigitated electrode (IDE) coated with vinyl ionic liquids (ILs) as electrolyte and Pt-Ru-Mo/MWNT electrocatalysts for occurring redox-active of CNCl gas. The vinyl ILs such as 1-butyl-3-(vinylbenzyl)imidazolium chloride, $[BVBI]^+Cl^-$, and 3-hexyl-1-vinylimidazolium bromide, $[HVI]^+Br^-$, were synthesized by $SN_2$ reaction in order to use electrolyte. The Pt-Ru-Mo/MWNT electrocatalysts were also prepared by one-step radiation-induced reduction of metal ions in the presence of MWNTs as supports. The fabricated EG sensor with vinyl ILs electrolyte was evaluated through optical microscopy (OM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The prepared EG sensor is clearly detected over 2.0 ppm CNCl gas and is exhibited a liner relationship between current and concentration over a region of 10-100 ppm.

Keywords

Electrochemical gas sensor;Interdigitated electrode;Vinyl ionic liquids;Pt-Ru-Mo/MWNT electrocatalysts;One-step radiation-induced reduction;CNCl gas

References

  1. A. C. Franzoi, J. Dupont, A. Spinelli and I. C. Vieira, Talanta, 77(4), 1322-1327 (2009). https://doi.org/10.1016/j.talanta.2008.09.010
  2. W. Sun, P. Qin, H. Gao, G. Li and K. Jiao, Biosens. Bioelectron, 25(6), 1264-1270 (2010). https://doi.org/10.1016/j.bios.2009.10.011
  3. P. Bernardo, J. C. Jansen, F. Bazzarelli, F. Tasselli, A. Fuoco, K. Friess, P. Izak, V. Jarmarova, M. Kaeirkova and G. Clarizia, Sep. Purif. Technol., 97(3), 73-82 (2012). https://doi.org/10.1016/j.seppur.2012.02.041
  4. C. Liao, X. G. Sun and S. Dai, Electrochim. Acta, 87(1), 889-894 (2013). https://doi.org/10.1016/j.electacta.2012.10.027
  5. S. K. KimJ. U. Jeon, K. S. Sim, H. D. Kwen and S. H. Choi, J. Nanoelectron. Optoe., 7(5), 488-493 (2012). https://doi.org/10.1166/jno.2012.1390
  6. G. D. Allen, M. C. Buzzeo, C. Villagran, C. Hardacre and R. Compton, J. Electronal. Chem., 575(2), 311-320 (2005). https://doi.org/10.1016/j.jelechem.2004.09.023
  7. E. Capella-Peiro, L. Monferrer-Pons, C. Garcia-Alvarez-Coque and J. Esteve-Romero, Anal. Chim. Acta, 427(1), 93-100 (2001). https://doi.org/10.1016/S0003-2670(00)01194-6
  8. I. H. Lee, H. D. Kwen and S. H. Choi, Anal. Sci. Technol., 26(1), 42-50 (2013). https://doi.org/10.5806/AST.2013.26.1.042
  9. D. S. Yang, K. S. Sim, H. D. Kwen and S. H. Choi, J. Nanomater, 2011(1), 1-8 (2011).
  10. K. S. Sim, J. U. Jeon, H. D. Kwen and S. H. Choi, J. Nanoelectron. Optoe., 6(3), 277-282 (2011). https://doi.org/10.1166/jno.2011.1168
  11. K. S. Sim, S. M. Lim, H. D. Kwen and S. H. Choi, J. Nanomater, 2011(1), 1-8 (2011).
  12. Y. Li, X. R. Liu X. H. Ning, C. C. Huang, J. B. Zheng and J. C Zhang, J. Pharm. Anal, 1(4), 258-263 (2011). https://doi.org/10.1016/j.jpha.2011.09.001
  13. M. Nadherna, F. Opekar and J. Reiter, Electrochim. Acta, 56(16), 5650-5655 (2011). https://doi.org/10.1016/j.electacta.2011.04.022
  14. D. S. Jacob, A. Rothschild, H. L. Tuller and A. Gedanken, Ultrason. Sonochem, 17(4), 726-729 (2010). https://doi.org/10.1016/j.ultsonch.2009.12.015
  15. D. Brondani, C. W. Scheeren, J. Dupont and I. C. Vieira, Sens. and Actuators B: Chem., 140(1), 252-259 (2009). https://doi.org/10.1016/j.snb.2009.04.037

Acknowledgement

Supported by : Hannam University