DOI QR코드

DOI QR Code

Characterization of CdS-quantum dot particles using sedimentation field-flow fractionation (SdFFF)

침강 장-흐름 분획법을 이용한 CdS 양자점 입자의 특성 분석

  • Choi, Jaeyeong (Department of Chemistry, Hannam University) ;
  • Kim, Do-Gyun (Department of Chemistry, Hannam University) ;
  • Jung, Euo Chang (Nuclear Chemistry Research Center, Korea Atomic Energy Research Institute) ;
  • Kwen, HaiDoo (Division of Chemistry, School of General Education, University of Seoul) ;
  • Lee, Seungho (Department of Chemistry, Hannam University)
  • Received : 2014.11.26
  • Accepted : 2015.02.06
  • Published : 2015.02.25

Abstract

CdS-QD particles are a nano-sized semiconducting crystal that emits light. Their optical properties show great potential in many areas of applications such as disease-diagnostic reagents, optical technologies, media industries and solar cells. The wavelength of emitting light depends on the particle size and thus the quality control of CdS-QD particle requires accurate determination of the size distribution. In this study, CdS-QD particles were synthesized by a simple ${\gamma}$-ray irradiation method. As a particle stabilizer polyvinyl pyrrolidone (PVP) were added. In order to determine the size and size distribution of the CdS-QD particles, sedimentation field-flow fractionation (SdFFF) was employed. Effects of carious parameters including the the flow rate, external field strength, and field programming conditions were investigated to optimize SdFFF for analysis of CdS-QD particles. The Transmission electron microscopy (TEM) analysis show the primary single particle size was ~4 nm, TEM images indicate that the primarty particles were aggregated to form secondary particles having the mean size of about 159 nm. As the concentration of the stabilizer increases, the particle size tends to decrease. Mean size determined by SdFFF, TEM, and dynamic light scattering (DLS) were 126, 159, and 152 nm, respectively. Results showed SdFFF may become a useful tool for determination of the size and its distribution of various types of inorganic particles.

Keywords

Sedimentation field-flow fractionation (SdFFF);Quantum dot (QD);Size and size distribution;${\gamma}$-ray irradiation method

Acknowledgement

Supported by : National Research Foundation (NRF)

References

  1. J. C. Giddings, F. J. F. Yang and M. N. Myers, Science, 193(4259), 1244-1245 (1976). https://doi.org/10.1126/science.959835
  2. T. Rameshwar, S. Samal, S. Lee, S. Kim, J. Cho and I. S. Kim, J. Nanosci. Nanotechnol, 6(8), 2461-2467 (2006). https://doi.org/10.1166/jnn.2006.544
  3. M. Bouby, H. Geckeis and F. W. Geyer, Anal. Bioanal. Chem., 392(7-8), 1447-1457 (2008). https://doi.org/10.1007/s00216-008-2422-0
  4. S. T. Kim, D. Y. Kang, S. Lee, W. S. Kim, J. T. Lee, H. S. Cho and S. H. Kim, J. Liq. Chromatogr. Relat. Technol., 30(17), 2533-2544 (2007). https://doi.org/10.1080/10826070701540092
  5. S. Tadjiki, S. Assemi, C. E. Deering, J. M. Veranth and J. D. Miller, J. Nanopart. Res., 11(4), 981-988 (2009). https://doi.org/10.1007/s11051-008-9560-3
  6. Martin E. Schimpf, Karin Caldwell and J. C. Giddings, In 'Chapter 2. Retention-Normal Mode', pp 31-48, Mark R. Schure, Martin E. Schimpf, and P. D. Schettler, Eds., Wiley-Interscience, New York, 2000.
  7. P. S. Williams, In 'Chapter 9. Programmed Field-Flow Fractionation: Retention', pp 145-165, Mark R. Schure, Martin E. Schimpf, and P. D. Schettler, Eds., Wiley-Interscience, New York, 2000.
  8. P. S. Williams and J. C. Giddings, Anal. Chem., 59(17), 2038-2044 (1987). https://doi.org/10.1021/ac00144a007
  9. J. Choi, H. D. Kwen, Y. S. Kim, S. H. Choi and S. Lee, Microchem. J, 117, 34-39 (2014). https://doi.org/10.1016/j.microc.2014.06.002
  10. Y. Wu, L. Wang, M. Xiao and X. Huang, J. Non. Cryst. Solids, 354(26), 2993-3000 (2008). https://doi.org/10.1016/j.jnoncrysol.2007.12.005
  11. L. Baruah and S. S. Nath, Micro Nanosystems, 4(1), 80-84 (2012). https://doi.org/10.2174/1876402911204010080
  12. H. Dou, K. H. Kim, B. C. Lee, J. Choe, H. S. Kim and S. Lee, Powder Technol., 235, 814-822 (2013). https://doi.org/10.1016/j.powtec.2012.11.042
  13. J. Choi, H. D. Kwen, Y. S. Kim, S. H. Choi and S. Lee, Microchem. J, 117, 34-39 (2014). https://doi.org/10.1016/j.microc.2014.06.002
  14. O. Obonyo, E. Fisher, M. Edwards and D. Douroumis, Crit. Rev. Biotechnol, 30(4), 283-301 (2010). https://doi.org/10.3109/07388551.2010.487184
  15. M. Mostafavi, Y. Liu, P. Pernot and J. Belloni, Radiat. Phys. Chem., 59(1), 49-59 (2000). https://doi.org/10.1016/S0969-806X(99)00521-6
  16. E. Bolea, J. Jimnez-Lamana, F. Laborda and J. R. Castillo, Anal. Bioanal. Chem., 401(9), 2723-2732 (2011). https://doi.org/10.1007/s00216-011-5201-2
  17. Y. H. Park, W. S. Kim and D. W. Lee, Anal. Bioanal. Chem., 375(4), 489-495 (2003). https://doi.org/10.1007/s00216-002-1722-z
  18. D. L. Green, J. S. Lin, Y.-F. Lam, M. Z. C. Hu, D. W. Schaefer and M. T. Harris, J. Colloid Interface Sci., 266(2), 346-358 (2003). https://doi.org/10.1016/S0021-9797(03)00610-6
  19. M. Kaszuba, D. McKnight, M. T. Connah, F. K. McNeil-Watson, and U. Nobbmann, J. Nanopart. Res., 10(5), 823-829 (2008). https://doi.org/10.1007/s11051-007-9317-4
  20. S. Lee, S. Prabhakara Rao, M. H. Moon and J. Calvin Giddings, Anal. Chem., 68(9), 1545-1549 (1996). https://doi.org/10.1021/ac9511814
  21. F. V. D. Kammer, S. Legros, T. Hofmann, E. H. Larsen and K. Loeschner, TrAC, Trends Anal. Chem., 30(3), 425-436 (2011). https://doi.org/10.1016/j.trac.2010.11.012
  22. S. T. Kim, H. K. Kim, S. H. Han, E. C. Jung and S. Lee, Microchem. J., 110, 636-642 (2013). https://doi.org/10.1016/j.microc.2013.07.015
  23. P. J. P. Cardot, S. Rasouli, and P. Blanchart, J. Chromatogra. A, 905(1-2), 163-173 (2001). https://doi.org/10.1016/S0021-9673(00)00973-0
  24. J. C. Giddings, Science, 260(5113), 1456-1465 (1993). https://doi.org/10.1126/science.8502990
  25. J. C. Giddings, 'Characterization of colloid-sized and larger particles by field-flow fractionation', Los Angeles, CA, USA, 156-159 (1988).
  26. N. Soltani, E. Saion, M. Erfani, K. Rezaee, G. Bahmanrokh, G. P. C. Drummen, A. Bahrami and M. Z. Hussein, Int. J. Mol. Sci., 13(10), 12412-12427 (2012). https://doi.org/10.3390/ijms131012412
  27. S. S. Narayanan and S. K. Pal, J. Phys. Chem. B, 110(48), 24403-24409 (2006). https://doi.org/10.1021/jp064180w
  28. J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi and K. F. Jensen, Adv. Mater., 12(15), 1102-1105 (2000). https://doi.org/10.1002/1521-4095(200008)12:15<1102::AID-ADMA1102>3.0.CO;2-J
  29. A. P. Alivisatos, W. Gu, and C. Larabell, Annu. Rev. Biomed. Eng., 55-76 (2005).
  30. S. J. Han, P. Rathinaraj, S. Y. Park, Y. K. Kim, J. H. Lee, I. K. Kang, J. S. Moon and J. G. Winiarz, BioMed. Res. Int., 2014, ID 954307 (2014).
  31. K. Qasim, J. Chen, Z. Li, W. Lei and J. Xa, RSC Adv., 3(30), 12104-12108 (2013). https://doi.org/10.1039/c3ra42055h
  32. A. Zattoni, D. C. Rambaldi, P. Reschiglian, M. Melucci, S. Krol, A. M. C. Garcia, A. Sanz-Medel, D. Roessner and C. Johann, J. Chromatogr. A, 1216(52), 9106-9112 (2009). https://doi.org/10.1016/j.chroma.2009.06.037