DOI QR코드

DOI QR Code

Development of intracellular organelle markers using modified glycolipid-binding peptides in mammalian cells

세포내 특정 소기관 타기팅 마커 개발을 위한 당지질-결합 펩타이드 변형 및 세포내 타기팅 분석

  • Received : 2014.05.30
  • Accepted : 2014.12.10
  • Published : 2015.02.25

Abstract

Intracellular organelles in eukaryotic cells play important roles in many cellular functions. Intracellular trafficking of many proteins to specific intracellular organelles is tightly regulated by various mechanisms in cells. Therefore, elucidating the targeting mechanism of novel markers for intracellular organelles is important for cellular physiology and pathology. In this study, we tried to identify the peptides which could bind to specific glycolipid in cellular membrane using GFP-fused glycolipid-binding peptides, and analyzed their cellular localization. As a result, we could identify mitochondria-, Golgi- or plasma membrane-targeting peptides. Furthermore, we found that the plasma membrane-targeting peptide was localized to the plasma membrane via electrostatic interactions. Thus, our results suggest that various glycolipid-binding peptides could be used as intracellular organelles markers.

Keywords

glycolipid-binding peptide;intracellular organelles;marker;plasma membrane;electrostatic interaction

References

  1. J. S. Liang, B. M. Schreiber, M. Salmona, G. Phillip, W. A. Gonnerman, F. C. de Beer and J. D. Sipe, J. Lipid Res., 37(10), 2109-2116 (1996).
  2. T. Nilsson and G. Warren, Curr. Opin. Cell Biol., 6(4), 517-521 (1994). https://doi.org/10.1016/0955-0674(94)90070-1
  3. K. Bos, C. Wraight and K. K. Stanley, EMBO J, 12(5), 2219-2228 (1993).
  4. D. J. Jang, S. W. Park and B. K. Kaang, BMB Rep., 42(1), 1-5 (2009). https://doi.org/10.5483/BMBRep.2009.42.1.001
  5. G. Di Paolo and P. De Camilli, Nature, 443(7112), 651-657 (2006). https://doi.org/10.1038/nature05185
  6. T. Yeung, G. E. Gilbert, J. Shi, J. Silvius, A. Kapus and S. Grinstein, Science, 319(5860), 210-213 (2008). https://doi.org/10.1126/science.1152066
  7. K. H. Kim, Y. W. Jun, Y. Park, J. A. Lee, B. C. Suh, C. S. Lim, Y. S. Lee, B. K. Kaang and D. J. Jang, J Biol Chem., 289(37), 25797-25811 (2014). https://doi.org/10.1074/jbc.M114.572222
  8. J. Kanaani, G. Patterson, F. Schaufele, J. Lippincott-Schwartz and S. Baekkeskov, J. Cell Sci., 121(Pt 4), 437-449 (2008). https://doi.org/10.1242/jcs.011916
  9. G. S. Baillie, E. Huston, G. Scotland, M. Hodgkin, I. Gall, A. H. Peden, C. MacKenzie, E. S. Houslay, R. Currie, T. R. Pettitt, A. R. Walmsley, M. J. Wakelam, J. Warwicker and M. D. Houslay, J. Biol. Chem., 277(31), 28298-28309 (2002). https://doi.org/10.1074/jbc.M108353200
  10. Y. Ma and S. S. Taylor, J. Biol. Chem., 283(17), 11743-11751 (2008). https://doi.org/10.1074/jbc.M710494200
  11. R. Mahfoud, N. Garmy, M. Maresca, N. Yahi, A. Puigserver and J. Fantini, J. Biol. Chem., 277(13), 11292-11296 (2002). https://doi.org/10.1074/jbc.M111679200
  12. T. Matsubara, K. Iijima, M. Nakamura, T. Taki, Y. Okahata and T. Sato, Langmuir, 23(2), 708-714 (2007). https://doi.org/10.1021/la0619067
  13. N. H. Guo, H. C. Krutzsch, E. Negre, T. Vogel, D. A. Blake and D. D. Roberts, Proc. Natl. Acad Sci. U S A, 89(7), 3040-3044 (1992). https://doi.org/10.1073/pnas.89.7.3040

Acknowledgement

Supported by : 한남대학교