Molecular Characterization of Five Potyviruses Infecting Korean Sweet Potatoes Based on Analyses of Complete Genome Sequences

  • Received : 2015.04.29
  • Accepted : 2015.08.16
  • Published : 2015.12.01


Sweet potatoes (Ipomea batatas L.) are grown extensively, in tropical and temperate regions, and are important food crops worldwide. In Korea, potyviruses, including Sweet potato feathery mottle virus (SPFMV), Sweet potato virus C (SPVC), Sweet potato virus G (SPVG), Sweet potato virus 2 (SPV2), and Sweet potato latent virus (SPLV), have been detected in sweet potato fields at a high (~95%) incidence. In the present work, complete genome sequences of 18 isolates, representing the five potyviruses mentioned above, were compared with previously reported genome sequences. The complete genomes consisted of 10,081 to 10,830 nucleotides, excluding the poly-A tails. Their genomic organizations were typical of the Potyvirus genus, including one target open reading frame coding for a putative polyprotein. Based on phylogenetic analyses and sequence comparisons, the Korean SPFMV isolates belonged to the strains RC and O with >98% nucleotide sequence identity. Korean SPVC isolates had 99% identity to the Japanese isolate SPVC-Bungo and 70% identity to the SPFMV isolates. The Korean SPVG isolates showed 99% identity to the three previously reported SPVG isolates. Korean SPV2 isolates had 97% identity to the SPV2 GWB-2 isolate from the USA. Korean SPLV isolates had a relatively low (88%) nucleotide sequence identity with the Taiwanese SPLV-TW isolates, and they were phylogenetically distantly related to SPFMV isolates. Recombination analysis revealed that possible recombination events occurred in the P1, HC-Pro and NIa-NIb regions of SPFMV and SPLV isolates and these regions were identified as hotspots for recombination in the sweet potato potyviruses.


complete genomes;phylogenetic analyses;recombination;sweet potato viruses


  1. Abad, J. A., Conkling, M. A. and Moyer, J. W. 1992. Comparison of the capsid protein cistron from serologically distinct strains of Sweet potato feathery mottle virus (SPFMV). Arch. Virol. 126:147-157.
  2. Adams, M. J., Antoniw, J. F. and Fauquet, C. M. 2005. Molecular criteria for genus and species discrimination within the family Potyviridae. Arch. Virol. 150: 459-479.
  3. Adams, M. J., Zerbini, F. M., French, R., Rabenstein, F., Stenger, D. C., Valkonen, J. P. T. 2011. 9th Report of the International Committee for Taxonomy of Viruses, In: Virus Taxonomy, ed. by King, A. M. Q., Lefkowitz, E. Adams, M. J., Carstens, E. B. pp 1069-1089. Elsevier Academic Press, San Diego.
  4. Ateka, E. M., Barg, E., Njeru, R. W., Thompson, G. and Vetten, H. J. 2007. Biological and molecular variability among geographically diverse isolate of Sweet potato virus 2. Arch. Virol. 152:479-488.
  5. Brunt, A. A., Crabtree, K., Dallwitz, M. J., Gibbs, A. J. and Watson, L. 1996. Viruses of Plants. Descriptions and Lists from the VIDE Database. CAB International, Wallingford, UK.
  6. Chung, B. Y. W., Miller, W. A., Atkins, J. F. and Firth, A. E. 2008. An overlapping essential gene in the Potyviridae. P. Natl. Acad. Sci. USA 105:5897-5902.
  7. Clark, C. A., Davis, J. A., Abad, J. A., Cuellar, W. J., Fuentes, S., Kreuze, J. F., Gibson, R. W., Mukasa, S. B., Tugume, A. K., Tairo, F. and Valkonen, J. P. T. 2012. Sweetpotato viruses: 15 years of progress on understanding and managing complex diseases. Plant Dis. 96:168-185.
  8. Gibson, R. W., Mpembe, I., Alicai, T., Carey, E. E., Mwanga, R. O. M., Seal, S. E. and Vetten, H. J. 1998. Symptoms, aetiology and serological analysis of sweet potato virus disease in Uganda. Plant Pathol. 47:95-102.
  9. Gutierrez, D. L., Fuentes, S. and Salazar, L. F. 2003. Sweet potato virus disease (SPVD): Distribution, incidence, and effect on sweet potato yield in Peru. Plant Dis. 87:297-302.
  10. Ha, C., Revill, P., Harding, R. M., Vu, M. and Dale, J. L. 2008. Identification and sequence analysis of potyviruses infecting crops in Vietnam. Arch. Virol. 153:45-60.
  11. Hahn, S. K. 1979. Effect of virus (SPDV) on growth and yield of sweet potato. Exp. Agric. 15:253-256.
  12. Jonson, M. G., Seo, J. K., Choi, H. S., Kim, J. S. and Kim, K. H. 2009. Effects of Recombination on the pathogenicity and evolution of Pepper mottle virus. Plant Pathology J. 25:417-421.
  13. Karyeija, R. F., Kreuze, J. F., Gibson, R. W. and Valkonen, J. P. T. 2000. Synergistic interactions of a potyvirus and a phloemlimited crinivirus in sweetpotato cultivars. Virology 269:26-36.
  14. Kreuze, J. F., Karyeija, R. F., Gibson, R. W. and Valkonen, J. P. T. 2000. Comparisons of coat protein gene sequences show that East African isolates of Sweet potato feathery mottle virus form a genetically distinct group. Arch. Virol. 145:567-574.
  15. Kwak, H. R., Kim, M. K., Jung, M. N., Lee, S. H., Park, J. W., Kim, K. H. and Choi, H. S. 2006. Virus diseases incidences of sweet potato in Korea. Plant Pathol. J. 22:239-247.
  16. Kwak, H. R., Kim, M. K., Jung, M. N., Lee, S. H., Park, J. W., Kim, K. H. Ko, S. J. and Choi, H. S. 2007. Genetic diversity of Sweet potato feathery mottle virus from sweet potatoes in Korea. Plant Pathology J. 23:13-21.
  17. Kwak, H. R., Kim, M. K., Shin, J. C., Lee, Y. J., Seo, J. K., Lee, H. U. and Choi, H. S. 2014. The Current Incidence of Viral Disease in Korean Sweet Potatoes and Development of Multiplex RT-PCR Assays for Simultaneous Detection of Eight Sweet Potato Viruses. Plant Pathology J. 30: 416-424.
  18. Lai, M. M. 1992. RNA recombination in animal and plant viruses. Microbiological reviews 56:61-79.
  19. Li, F., Xu, D., Abad, J. and Li, R. 2012. Phyogenetic relationships of closely related potyviruses infecting sweet potato determined by genomic characterization of Sweet potato virus G and Sweet potato virus 2. Virus Genes 45:118-125.
  20. Mukasa, S. B., Rubaihayo, P. R. and Valkonen, J. P. T. 2003. Sequence variability within the 3'-proximal part of the Sweet potato mild mottle virus genome. Arch. Virol. 148:487-496.
  21. Mukasa, S. B., Rubaihayo, P. R. and Valkonen, J. P. T. 2006. Interactions between a crinivirus, an ipomovirus and a potyvirus in coinfected sweetpotato plants. Plant Pathol. 55:458-467.
  22. Nguyen, H. D., Tran, H. T. N. and Ohshima, K. 2013. Genetic variation of the Turnip mosaic virus population of Vietnam: a case study of founder, regional and local influences. Virus Res. 171:138-149.
  23. Qin, Y., Zhang, Z., Qiao, Q., Zhang, D., Tian, Y. and Wang, Y. 2013. Molecular variability of Sweet potato chlorotic stunt virus (SPCSV) and five potyviruses infecting sweet potato in China. Arch. Virol. 158:491-495.
  24. Rannali, M., Czekaj, V., Jones R. A. C., Fletcher, J. D., Davis, R. I., Mu, L. and Valkonen, J. P. T. 2009. Molecular characterization of Sweet potato feathery mottle virus (SPFMV) isolates from Easter Island, French Polynesia, New Zealand and southern Africa. Plant Dis. 93:933-939.
  25. Riechmann, J. L., Lain, S. and Garcia, J. A. 1992. Highlights and prospects of potyvirus molecular biology. J. Gen. Virol. 73:1-16.
  26. Rodriguez Pardina, P. E., Bejerman, N., Luque, A. V. and Di Feo, L. 2012. Complete nucleotide sequence of an Argentinean isolate of Sweet potato virus G. Virus Genes 45:593-595.
  27. Rossel, H. W. and Thottappilly, G. 1988. Complex virus diseases of sweet potato. In: Exploration, maintenance, and utilization of sweet potato genetic resources. Report of 1st Sweet Potato Planning Conference. 1987. International Potato Centre, Lima, Peru.
  28. Seo, J. K., Ohshima, K., Lee, H. G., Son, M., Choi, H. S., Lee, S. H., Sohn, S. H. and Kim, K. H. 2009. Molecular variability and genetic structure of the population of Soybean mosaic virus based on the analysis of complete genome sequences. Virology 393:91-103.
  29. Tairo, F., Mukasa, S. B., Jones, R. A. C., Kullaya, A., Rubaihayo, P. R. and Valkonen, J. P. T. 2005. Unraveling the genetic diversity of the three main viruses involved in Sweet Potato Virus Disease (SPVD) and its implications. Mol. Plant Pathol. 6:199-211.
  30. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30:2725-2729.
  31. Tugume, A. K., Cuellar, W. J., Mukasa, S. B. and Valkonen, J. P. T. 2010. Molecular genetic analysis of virus isolates from wild and cultivated plants demonstrates that East Africa is a hotspot for the evolution and diversification of Sweet potato feathery mottle virus. Mol. Ecol. 19:3139-3156.
  32. Untiveros, M., Fuentes, S. and Kreuze, J. 2008. Molecular variability of sweet potato feathery mottle virus and other potyviruses infecting sweet potato in Peru. Arch. Virol. 153:473-483.
  33. Untiveros, M., Fuentes, S. and Salazar, L. F. 2007. Synergistic interaction of Sweet potato chlorotic stunt virus (Crinivirus) with carla-, cucumo-, ipomo-, and potyviruses infecting sweet potato. Plant Dis. 91:669-676.
  34. Untiveros, M., Quispe, D. and Kreuze, J. 2010. Analysis of complete genomic sequences of isolates of the Sweet potato feathery mottle virus strains C and EA: molecular evidence for two distinct potyvirus species and two P1 protein domains. Arch. Virol. 155:2059-2063.
  35. Valli, A., Lopez-Moya, J. J. and Garcia, J. A. 2007. Recombination and gene duplication in the evolutionary diversification of P1 proteins in the family Potyviridae. J. Gen. Virol. 88:1016-1028.
  36. Wang, M., Abad, J., Fuentes, S. and Li, R. 2013. Complete genome sequence of the original Taiwanese isolate of Sweet potato latent virus and its relationship to other potyviruses infecting sweet potato. Arch. Virol. 158:2189-2192.
  37. Yamasaki, S., Sakai, J., Kamisoyama, S., Goto, H., Okuda, M. and Hanada, K. 2009. Control of russet crack disease in sweetpotato plants using a protective mild strain of Sweet potato feathery mottle virus. Plant Dis. 93:190-194.
  38. Yamasaki, S., Sakai, J., Fuji, S., Kamisoyama, S., Emoto, K., Ohshima, K. and Hanada, K. 2010. Comparisons among isolates of Sweet potato feathery mottle virus using complete genomic RNA sequences. Arch. Virol. 155:795-800.
  39. Chare, E. R. and Holmes, E. C. 2006. A phylogenetic survey of recombination frequency in plant RNA viruses. Arch. Virol. 151:933-946.

Cited by

  1. Deep Sequencing Reveals the Complete Genome Sequence ofSweet potato virus Gfrom East Timor vol.4, pp.5, 2016,
  2. Complete Genome Sequences of thePotyvirus Sweet potato virus 2from East Timor and Australia vol.4, pp.3, 2016,
  3. Complete Genome Sequences of theCarlavirus Sweet potato chlorotic fleck virusfrom East Timor and Australia vol.4, pp.3, 2016,
  4. : Biological and Molecular Properties, and Recombination Analysis Based on Complete Genomes vol.102, pp.10, 2018,


Supported by : Ministry of Agriculture, Food and Rural Affairs