DOI QR코드

DOI QR Code

Pathotypes of Bacterial Spot Pathogen Infecting Capsicum Peppers in Korea

  • Received : 2015.05.04
  • Accepted : 2015.07.23
  • Published : 2015.12.01

Abstract

Sixty-seven isolates of bacterial spot pathogen (Xanthomonas spp.) collected from six provinces of Korea were tested for the identification of their pathotypes and determination of their distribution throughout Korea in an effort to genetically manage the disease. Near isogenic lines of Early Calwonder (Capsicum annuum) pepper plants carrying $Bs_1$, $Bs_2$ and $Bs_3$, and PI235047 (C. pubescens) were used as differential hosts. Race P1 was found to be predominant, followed by race P7, and races P3 and P8 were also observed. This is the first report of races P7 and P8 in Korea. The races P7 and P8 were differentiated from the former races P1 and P3, respectively, on the basis of their ability to elicit hypersensitive reactions to PI235047.

Keywords

Capsicum annuum;Capsicum pubescens;race;resistance;Xanthomonas spp.

References

  1. Chung, H. J., Kim, G. Y., Koh, Y. J., Nou, I. S. and Hwang, B. K. 1997. Genetic differentiation of strains of Xanthomonas campestris pv. vesicatoria by random amplified polymorphic DNA (RAPD). Kor. J. Plant Pathol. 13:5-12.
  2. Cook, A. A. and Stall, R. E. 1969. Differentiation of pathotypes among isolates of Xanthomonas vesicatoria. Plant Dis. Rep. 53:617-619.
  3. Cook, A. A. and Guevara, Y. G. 1984. Hypersensitivity in Capsicum chacoense to race 1 of the bacterial spot pathogen of pepper. Plant Dis. 68:329-330. https://doi.org/10.1094/PD-69-329
  4. Cook, A. A. and Stall, R. E. 1963. Inheritance of resistance in pepper to bacterial spot. Phytopathology 53:1060-1062.
  5. Cox, R. S. 1982. Control of bacterial spot of tomato in southern Florida. Plant Dis. 66:870. https://doi.org/10.1094/PD-66-870
  6. Goode, M. J. and Sasser, M. 1980. Prevention-the key to controlling bacterial spot and bacterial speck of tomato. Plant Dis. 64:831-834. https://doi.org/10.1094/PD-64-831
  7. Hamza, A. A., Robene-Soustrade, I., Jouen, E., Gagnevin, L., Lefeuvre, P., Chiroleu, F. and Pruvost, O. 2010. Genetic and pathological diversity among Xanthomonas strains responsible for bacterial spot on tomato and pepper in the southwest Indian Ocean region. Plant Dis. 94:993-999. https://doi.org/10.1094/PDIS-94-8-0993
  8. Hibberd, A. M., Bassett, M. J. and Stall, R. E. 1987a. Allelism tests of 3 dominant genes for hypersensitive resistance to bacterial spot of pepper. Phytopathology 77:1304-1307. https://doi.org/10.1094/Phyto-77-1304
  9. Hibberd, A. M., Persley, D. M., Nahrund, G. C. and Gillespie, G. 1989. Breeding disease resistant Capsicum for wide adaptation. Acta Hort. 247:171-174.
  10. Hibberd, A. M., Stall, R. E. and Bassett, M. J. 1987b. Different phenotypes associated with incompatible races and resistance genes in bacterial spot disease of pepper. Plant Dis. 71:1075-1078. https://doi.org/10.1094/PD-71-1075
  11. Jones, J. B., Lacy, G. H., Bouzar, H., Minsavage, G. V., Stall, R. E. and Schaad, N. W. 2005. Bacterial spot-worldwide distribution, importance and review. Acta Hort. 695:27-31.
  12. Jones, J. B., Lacy, G. H., Bouzar, H., Stall, R. E. and Schaad, N. W. 2004. Reclassification of the Xathomonads associated with bacterial spot disease of tomato and pepper. System. Appl. Microbiol. 27:755-762. https://doi.org/10.1078/0723202042369884
  13. Jones, J. B., Minsavage, G. V., Roberts, P. D., Johnson, R. R. and Kousik, C. S. 2002. A non-hypersensitive resistance in pepper to the bacterial spot pathogen is associated with two recessive genes. Phytopathology 92:273-277. https://doi.org/10.1094/PHYTO.2002.92.3.273
  14. Kim, B. S. 1983. Inheritance of resistance to bacterial spot (Xanthomonas campestris pv. vesicatoria (Doidge) Dye in peppers (Capsicum spp.). Ph. D. dissertation, University of Hawaii.
  15. Kim, B. S. and Hartmann, R. W. 1985. Inheritance of a gene (Bs3) conferring hypersensitive resistance to Xanthomonas campestris pv. vesicatoria in pepper (Capsicum annuum). Plant Dis. 69:233-235.
  16. Kim, B. S., Kwon, Y. S. and Hur, J. M. 1990. Differentiation and distribution of pathotypes of Xanthomonas campestris pv. vesicatoria pathogenic on pepper in Korea. Korean J. Plant. Pathol. 6:245-249.
  17. Kim, B. S., Kim, Y. C., Shin, K. S. and Kim, J. H. 2007. Nearisogenic lines for genes conferring hypersensitive resistance to bacterial spot in chili pepper. Plant Pathol. J. 23:155-166. https://doi.org/10.5423/PPJ.2007.23.3.155
  18. Kim, B. S., Souvinmonh, B., Son, K., Ahn, J. H. and Lee, S. M. 2009. New additions to sources of resistance to bacterial spot and field performance of HR gene NILs in Capsicum pepper. Hort. Environ. Biotech. 50:566-570.
  19. Kousik, C. S. and Ritchie, D. F. 1995. Isolation of pepper races 4 and 5 of Xantnomonas campestris pv. vesicatoria from diseased peppers in southern U.S. fields. Plant Dis. 79:540.
  20. Kousik, C. S. and Ritchie, D. F. 1996. Race shift in Xanthomonas camperstris pv. vesicatoria within a season in field-grown pepper. Phytopathology 86:952-953. https://doi.org/10.1094/Phyto-86-952
  21. Lee, S. D. and Cho, Y. S. 1996. Copper resistance and race distribution of Xanthomonas campestris pv. vesicatoria on pepper in Korea. Kor. J. Plant Pathol. 12:150-155.
  22. Minsavage, G. V., Dahlbeck, D., Whalen, M. C., Kearney, B., Bonas, U., Staskawicz, B. J. and Stall, R. E. 1990. Genefor-gene relationships specifying disease resistance in Xanthomonas campestris pv. vesicatoria - pepper interactions. Mol. Plant-Microbe Interact. 3:41-47. https://doi.org/10.1094/MPMI-3-041
  23. Oh, C.-S., Lee, S. and Heu, S. 2011. Genetic diversity of avrBslike genes in three different Xanthomonas species isolated in Korea. Plant Pathol. J. 27:26-32. https://doi.org/10.5423/PPJ.2011.27.1.026
  24. Pae, D. H., Yoon, J. Y. and Lee, J. M. 1994. Pathotype distribution of Xanthomonas campestris pv. vesicatoria on pepper (Capsicum annuum) in Korea and cross-protection between the pathotypes. J. Kor. Soc. Hort. Sci. 35:126-130.
  25. Pohronezny, K., Stall, R. E., Canteros, B. I., Kegley, M., Datnoff, L. E. and Ubramanya, R. 1992. Sudden shift in the prevalent race of Xanthomonas campestris pv. vesicatoria in pepper fields in southern Florida. Plant Dis. 76:118-120. https://doi.org/10.1094/PD-76-0118
  26. Potnis, N., Minsavage, G., Smith, J. K., Hurlbert, J. C., Norman, D., Rodrigues, R., Stall, R. E. and Jones, J. B. 2012. Avirulence proteins AvrBs7 from Xanthomonas gardneri and AvrBs1.1 from Xanthomonas euvesicatoria contribute to a novel gene-for-gene interaction in pepper. Mol. Plant-Microbe Interact. 25:307-320. https://doi.org/10.1094/MPMI-08-11-0205
  27. Sahin, F. and Miller, S. A. 1995. First report of pepper race 6 of Xanthomonas campestris pv. vesicatoria, causal agent of bacterial spot of pepper. Plant Dis. 79:1188.
  28. Sahin, F. and Miller, S. A. 1996. Characterization of Ohio strains of Xanthomonas campesrtis pv. vesicatoria, causal agent of bacterial spot of pepper. Plant Dis. 80:773-778. https://doi.org/10.1094/PD-80-0773
  29. Sahin, F. and Miller, S. A. 1998. Resistance in Capsicum pubescens to Xanthomonas campestris pv. vesicatoria pepper race 6. Plant Dis. 82:794-799. https://doi.org/10.1094/PDIS.1998.82.7.794
  30. Sowell, G. Jr. 1960. Bacterial spot resistance of introduced peppers. Plant Dis. Rep. 44:587-590.
  31. Sowell, G. Jr. and Dempsey, A. H. 1977. Additional sources of resistance to bacterial spot of pepper. Plant Dis. Rep. 61:684-686.
  32. Stall, R. E., Jones, J. B. and Minsavage, G. V. 2009. Durability of resistance in tomato and pepper to Xanthomonads causing bacterial spot. Annu. Rev. Phytopathol. 47:265-284. https://doi.org/10.1146/annurev-phyto-080508-081752
  33. Tran, N. H. and Kim, B. S. 2007. Search for sources of resistance to bacterial spot (Xanthomonas campestris pv. vesicatoria) in Capsicum pepper. Acta Hort. 760:323-328.
  34. Vallejos, C. E., Jones, V., Stall, R. E., Jones, J. B., Minsavage, G. V., Shultz, D. C., Rodrigues, R., Olsen, L. E. and Mazourek, M. 2010. Characterization of two recessive genes controlling resistance to all races of bacterial spot in peppers. Theor. Appl. Genet. 121:37-46. https://doi.org/10.1007/s00122-010-1289-6

Acknowledgement

Supported by : National Research Foundation of Korea (NRF), Ministry of Agriculture, Food and Rural Affairs