Research Review of Sodium and Sodium Ion Battery

나트륨을 활용한 이차전지 연구동향

  • 유철휘 (호서대학교 일반대학원 그린에너지공학과) ;
  • 강성구 (호서대학교 화학공학과) ;
  • 김진배 (호서대학교 화학공학과) ;
  • 황갑진 (호서대학교 일반대학원 그린에너지공학과)
  • Received : 2015.01.26
  • Accepted : 2015.02.28
  • Published : 2015.02.28


The secondary battery using sodium is investigating as one of power storage system and power in electric vehicles. The secondary battery using sodium as a sodium battery and sodium ion battery had merits such as a abundant resources, high energy density and safety. Sodium battery (sodium molten salt battery) is operated at lower temperature ($100^{\circ}C$) compared to NAS and ZEBRA battery ($300{\sim}350^{\circ}C$). Sodium ion battery is investigating as one of the post lithium ion battery. In this paper, it is explained for the principle and recent research trends in sodium molten salt and sodium ion battery.


Supported by : 호서대학교


  1. B.L. Ellis, L.F. Nazar, "Sodium and sodium-ion energy storage batteries", Current Opinion in Solid State and Materials Science, Vol. 16, 2012, p. 168.
  2. H-S. Choi, J-C. Kim, C-H. Ryu, G-J. Hwang, "Research review of the all vanadium redox-flow battery for large scale power storage", Membrane Journal, Vol. 21, No. 2, 2011, p. 107.
  3. G-J. Hwang, A-S. Kang, H. Ohya, "Review of the redox-flow secondary battery", Chemical Industry and Technology, Vol. 16, No. 5, 1998, p.455.
  4. NGK homepage,
  5. T. Horie, Y. Ishida, H. Fujioka, "New trends in power storage systems", NTT Building Technology Institute Report, 2004.
  6. R.C. Galloway, C.-H. Dustmann, "ZEBRA batterymetal cost availability and recycling", EVS-20, Nov.15-19, California, USA, 2003.
  7. M. Mack, R. Pitchai, "Batteries 2010", The Big Batteries Industry Guide-Battery overview, Batteries International, January 2010.
  8. J.L. Sudworth, "The sodium/nickel chloride (ZEBRA) battery", J. Power Sources, Vol. 100, 2001, p. 149.
  9. K. Nitta, S. Inazawa, S. Sakai, A. Fukunaga, E. Itani, K. Numata, R. Hagiwara, T. Nohira, "Development of molten salt electrolyte battery", SEI Technical Review, No. 76, April 2013, p.33.
  10. A. Fukunaga, T. Nohira, Y. Kozawa, R. Hagiwara, S. Sakai, K. Nitta, S. Inazawa, "Intermediate-temperature ionic liquid NaFSAKFSA and its application to sodium secondary batteries", J. Power Sources, Vol. 209, 2012, p.52.
  11. C.-Y. Chen, K. Matsumoto, T. Nohira, R. Hagiwara, A. Fukunaga, S. Sakai, K. Nitta, S. Inazawa, "Electrochemical and structural investigation of $NaCrO_2$ as a positive electrode for sodium secondary battery using inorganic ionic liquid NaFSA-KFSA", J. Power Sources, Vol. 237, 2013, p. 52.
  12. A. Fukunaga, T. Nohira, R. Hagiwara, K. Numata, E. Itani, S. Sakai, K. Nitta, S. Inazawa, "A safe and high-rate negative electrode for sodium-ion batteries: Hard carbon in NaFSA-$C_1C_3pyrFSA$ ionic liquid at 363K", J. Power Sources, Vol. 246, 2014, p. 387.
  13. C.-Y. Chen, K. Matsumoto, T. Nohira, R. Hagiwara, Y. Orikasa, Y. Uchimoto, "Pyrophosphate $Na_2FeP_2O_7$ as a low-cost and high-performance positive electrode material for sodium secondary batteries utilizing an inorganic ionic liquid", J. Power Sources, Vol. 246, 2014, p. 783.
  14. S. Kuze, J. Kageura, S. Mastumoto, T. Nakayama, M. Makidera, M. Saka, T. Yamaguchi, T. Yamamoto, K. Nakane, "Development of a sodium ion secondary battery", Sumitomo Kagaku, Vol. 2013, 2013, p. 1.
  15. N. Yabuuchi, S. Komaba, "A study on Iron-based layered Na-insertion materials", PF NEWS, Vol. 30, No. 3, Nov., 2012, p. 11.
  16. NEDO report No. 1079, "Making sodium-ion batteries that are worth their salt", 2011. 11. 16.
  17. F. Sauvage, L. Laffont, J.-M. Tarascon, E. Baudrin, "Study of the insertion/deinsertion mechanism of sodium into $Na_{0.44}MnO_2$", Inorg. Chem., Vol. 46, 2007, p. 3289.
  18. Y. Cao, L. Xiao, W. Wang, D. Choi, Z. Nie, J. Yu, L.-V. Saraf, Z. Yang, J. Liu, "Reversible sodium ion insertion in single crystalline manganese oxide nanowire with long cycle life", Adv. Mater., Vol. 23, 2011, p. 3155.
  19. T. Omori, "Natoriumu ion denchino denkyoku tokuseito zenkotaidenchino sisaku", Central Research Institute of Electric Power Industry (Japan) report, No. Q12011, May, 2013.
  20. Z. Liu, X. Wang, Y. Wang, A. Tang, S. Yang, L. He, "Preparation of $NaV_{1−x}Al_xPO_4F$ cathode materials for application of sodium-ion battery", Trans. Nonferrous Met. Soc. China, Vol. 18, 2008, p. 346.
  21. J. Barker, RKB. Gover, P. Burns, AJ. Bryan, "Hybrid-ion a lithium-ion cell based on a sodium insertion materials", Electrochem. Solid-State Lett., Vol. 9, 2006, A190.
  22. N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, "$P_2$-type $Na_x[Fe_{1/2}Mn_{1/2}]O_2$ made from earth abundant elements for rechargeable Na batteries", Nature Materials, Vol. 11, 2012, p. 512.
  23. X. Xia, J.R. Dahn, "$NaCrO_2$ is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes", Electrochem. Solid-State Lett., Vol. 15, No. 1, 2012, A1.
  24. S. Komaba, Y. Matsuura, T. Ishikawa, N. Yabuuchi, W. Murata, S. Kuze, "Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell", Electrochem. Commun., Vol. 21, 2012, 65.
  25. A. Darwiche, C. Marino, M.T. Sougrati, B. Fraisse, L. Stievano, L. Monconduit, "Better cycling performances of bulk Sb in Na-ion batteries compared to Li ion systems: An unexpected electrochemical mechanism", J. Amer. Chem. Soc., Vol. 134, 2012, 20805.
  26. L. Xiao, Y. Cao, J. Xiao, W. Wang, L. Kovarik, Z. Nie, J. Liu, "High capacity, reversible alloying reactions in SnSb/C nano-composites for Na-ion battery applications", Chem. Commun., Vol. 48, 2012, 3321.
  27. S.-I. Park, I. Gocheva, S. Okada, J. Yamaki, "Electrochemical properties of $NaTi_2(PO_4)_3$ anode for rechargeable aqueous sodium-ion batteries", J. Electrochem. Soc., Vol. 158, 2011, A1067.
  28. P. Senguttuvan, M. Palacin, "$Na_2Ti_3O_7$: lowest voltage ever reported oxide insertion electrode for sodium ion batteries", Chem. Mater., Vol. 23, 2011, 4109.
  29. C. Didier, M. Guignard, C. Denage, O. Szajwaj, S. Ito, I. Saasoune, J. Darriet, C. Delmas, "Electrochemical Na deintercalation from $NaVO_2$", Electrochem. Solid-State Lett., Vol. 14, 2011, A75.
  30. O. Szajwaj, E. Gaudin, F. Weill, J. Darriet, C. Delmas, "Investigation of the new P'3-$Na_{0.6}VO_2$ phase: structural and physical properties", Inorg. Chem., Vol. 48, 2009, 9147.
  31. V. Chevrier, G. Ceder, "Challenges for Na-ion negative electrodes", J. Electrochem. Soc., Vol. 158, 2011, A1011.

Cited by

  1. Development of Room Temperature Na/S Secondary Batteries vol.27, pp.6, 2016,