Optimized Germination Conditions and Human p53 Expression of Rice Embryo

쌀눈 발아의 최적조건 확립 및 p53 항암 유전자의 발현

Pih, Kyung-Tae;Choi, Ju-Youn;Kim, Keun-Cheol

  • Received : 2014.11.06
  • Accepted : 2015.01.08
  • Published : 2015.02.28


Rice embryo is more abundant than endosperms in nutrients such as proteins, lipids, and vitamin B1. In this study, we constructed p53 plasmid that could be expressed in a plant system, and investigated optimal germination conditions in a variety of media. For construction of p53 plasmid, we performed p53 amplification from pCDNA-p53, subcloned to TA cloning vector, and then reconstructed into pGEM-CaMV plant expression vector. On the other hand, we prepared a variety of imbibition buffers and complete media for efficient germination of the rice embryo. Imbibition buffers prepared with different concentrations of salt or detergent showed no significant effect on germination efficiency. We prepared further culture media, such as solid agar, liquid media, and paper towel to establish the optimal conditions. Rice embryo showed germination rates of more than 70% in the solid medium, more than 60% in the paper towel medium, but less than 25% in liquid media, although germination rate did not differ with varying concentrations of salt and sucrose in culture media. Under the optimal germination conditions, we introduced the p53 plasmid using imbibition method, and finally detected human p53 gene expression in the germinated rice embryo. This method might present a novel, practical approach for evaluating efficient gene expression utilizing imbibition method in rice embryo.


DNA imbibition;expression;p53;rice embryo;solid medium


  1. Woo, K. S., Chun, A. R., Oh, S. K., Kim, K. J., Kim, D. J., Yang, C. I., Kim, Y. G., Kim, J. H. and Jeong, H. S. 2010. Antioxidant and antitumor activities of ethanol extracts from unhulled and hulled rice Hiami (Oryza sativa L. cv. Hiami). J. Kor. Soc. Food Sci. Nutr. 39, 179-185.
  2. Yoo, J. H. and Jung, G. H. 1994. Uptake and expression of foreign genes using seed-derived embryos of rice. J. Plant Biol. 37, 77-83.
  3. Kwak, T. S. and Yeo, J. H. 2004. Varietal variation of ripending and physico-chemical properties in different rice ecotype. Kor. J. Intl. Agri. 16, 130-135.
  4. Lee, J. H. 2007. Production of green fluorescent protein (GFP) from transgenic rice cell suspension culture. J. Life Sci. 17, 293-297.
  5. Lee, S. H., Chun, H. K. and Lee, Y. S. 2001. The effects of rice germ oil supplement on blood glucose, serum lipid and blood pressure levels in diabetic patients. Kor. J. Lipidol. 11, 548-557.
  6. Lee, S. Y., Pyun, K. W. and Park, Y. J. 2002. Comparative studies on hydration kinetics of raw and fermented brown rice. Food Eng. Prog. 6, 178-185.
  7. Kim, J. H. 2009. Development of transgenic rice lines producing the human lactoferrin and Bifidobacterial $\beta$-galactosidase. Ph.D. dissertation, Hallym University, Kangwon-do, Korea.
  8. Lee, Y. M., Seok, H. Y., Park, H. Y., Park, J. I., Han, J. S., Bang, T. S. and Moon, Y. H. 2009. Construction and verification of useful vectors for ectopic expression and suppression of plant genes. J. Life Sci. 19, 809-817.
  9. Park, S. K., Shing, D. J., Hwang, W. H., Hur, Y. J., Kim, T. H., Oh, S. Y., Cho, J. H., Han, S. I., Lee, S. S., Nam, M. H. and Park, D. S. 2014. Development of marker-free transgenic rice expressing the wheat storage protein, Glu-1Dy10, for increasing quality precessing of bread and noodles. J. Life Sci. 24, 618-626.
  10. Park, S. Y., Lee, S. H., Park, O. J. and Kim, Y. M. 2011. Apoptotic effects of curcumin and EGCG via Akt-p53 signaling pathway in HCT116 colon cancer cells. J. Life Sci. 21, 89-96.
  11. Shin, D. H. and Chung, C. K. 1998. Chemical composition of the rice germ from rice milling and its oil stability during storage. Kor. J. Food Sci. Technol. 30, 241-243.
  12. Cho, M. K., Kim, M. H. and Kang, M. Y. 2008. Effects of rice embryo and embryo jelly with black rice bran pigment on lipid metabolism and antioxidant enzyme activity in high cholesterol-fed rats. J. Kor. Soc. Appl. Biol. Chem. 51, 200-206.
  13. Choi, O. K., Yun, S. K. and Hwang, S. Y. 2000. The chemical components of Korean rice germ. Kor. J. Dietary Culture 15, 253-258.
  14. Kim, D. J., Oh, S. K., Yoon, M. R., Chun, A. R., Hong, H. C., Lee, J. S. and Kim, Y. K. 2010. Antioxidant compounds and antioxidant activities of the 70% ethanol extracts from brown and milled rice by cultivar. J. Kor. Soc. Food Sci. Nutr. 39, 467-473.
  15. Kim, H. Y. 2012. Identification and chemopreventive effects of bioactive compounds from germinated rough rice (Oryza sativa L.). Ph.D. dissertation, Chungbuk National University, Chungcheongbuk-do, Korea.
  16. Kim, L. S., Son, Y. K., Son, J. R. and Hur, H. S. 2001. Effect of germination condition and drying methods on physicochemical properties of sprouted brown rice. J. Kor. Crop Sci. 46, 221-228.
  17. Kim, M. S., Jeong, J. I. and Jeong, Y. H. 2003. Amino acid composition of milled and brown rices. J. Kor. Soc. Food Sci. Nutr. 32, 1385-1389.
  18. Kim, Y. S., Lee, N. Y., Hwang, C. S., Yu, M. J., Back, K. H. and Shin, D. H. 2004. Changes of physicochemical characteristics of rice milled by newly designed abrasive milling machine. J. Kor. Soc. Food Sci. Nutr. 33, 152-157.
  19. Kim Y. K. 2013. Study on the p53$\beta$ isoform in induced tumorigenesis, Master's Degree dissertation, Dankook University, Gyeonggi-do, Korea.
  20. Kurataka, O. and Takahiro, O. 2014. Genetic networks lead and follow tumor development: microRNA regulation of cell cycle and apoptosis in the p53 pathways. Bio. Med. R. Int. 2014, 1-10
  21. Chae, J. C. 2004. Present situation, research and prospect of rice quality and bioactivity in Korea. Food Sci. Ind. 37, 47-54.


Supported by : 강원대학교