DOI QR코드

DOI QR Code

Development of Three Dimensional Fracture Strain Surface in Average Stress Triaxiaility and Average Normalized Lode Parameter Domain for Arctic High Tensile Steel: Part I Theoretical Background and Experimental Studies

극한지용 고장력강의 평균 응력 삼축비 및 평균 정규 로드 파라메터를 고려한 3차원 파단 변형률 평면 개발: 제1부 이론적 배경과 실험적 연구

  • Received : 2015.10.08
  • Accepted : 2015.12.17
  • Published : 2015.12.31

Abstract

The stress triaxiality and lode angle are known to be most dominant fracture parameters in ductile materials. This paper proposes a three-dimensional failure strain surface for a ductile steel, called a low-temperature high-tensile steel (EH36), using average stress triaxiality and average normalized lode parameter, along with briefly introducing their theoretical background. It is an extension of previous works by Choung et al. (2011; 2012; 2014a; 2014b) and Choung and Nam (2013), in which a two-dimensional failure strain locus was presented. A series of tests for specially designed specimens that were expected to fail in the shear mode, shear-tension mode, and compression mode was conducted to develop a three-dimensional fracture surface covering wide ranges for the two parameters. This paper discusses the test procedures for three different tests in detail. The tensile force versus stroke data are presented as the results of these tests and will be used for the verification of numerical simulations and fracture identifications in Part II.

Keywords

Average stress triaxiality;Averge normalized lode parameter;Fracture strain surface;Pure shear test;Shear‐tension test;Pure compresion test

References

  1. Lou, Y., Huh, H., 2013. Extension of a Shear-controlled Ductile Fracture Model Considering the Stress Triaxiality and the Lode Parameter. International Journal of Solids and Structures, 50(2), 447-455. https://doi.org/10.1016/j.ijsolstr.2012.10.007
  2. Luo, M., Wierzbicki, T., 2010. Numerical Failure Analysis of a Stretch-bending Test on Dual-phase Steel Sheets Using a Phenomenological Fracture Model. International Journal of Solids and Structures, 47(22), 3084-3102. https://doi.org/10.1016/j.ijsolstr.2010.07.010
  3. Simulia, 2008. Abaqus User Manual. Silumia.
  4. Koplik, J., Needleman, A., 1988. Void Growth and Coalescence in Porous Plastic Solids. International Journal of Solids and Structures, 24(8), 835-853. https://doi.org/10.1016/0020-7683(88)90051-0
  5. Peirs, J., Verleysen, P., Van Paepegem, W., Degrieck, J., 2011. Determining the Sress-Strain Behaviour at Large Strains from High Strain Rate Tensile and Shear Experiments. International Journal of Impact Engineering, 38(5), 406-415. https://doi.org/10.1016/j.ijimpeng.2011.01.004
  6. Tvergaard, V., 1982. On Localization in Ductile Materials Containing Spherical Voids. International Journal of Fracture, 18(4), 237-252.
  7. Tvergaard, V., Needleman, A., 1984. Analysis of the Cup-cone Fracture in a Round Tensile Bar. Acta Metallurgica, 32(1), 157-169. https://doi.org/10.1016/0001-6160(84)90213-X
  8. Choung, J., Nam, W., 2013. Formulation of Failure Strain According to Average Stress Triaxiality of Low Temperature High Strength Steel (EH36). Journal of Ocean Engineering and Technology, 27(2), 19-26. https://doi.org/10.5574/KSOE.2013.27.2.019
  9. Choung, J., Nam, W., Kim, Y., 2014a. Fracture Simulation of Low-temperature High-strength Steel (EH36) using User-subroutine of Commercial Finite Element Code. Journal of Ocean Engineering and Technology, 28(1), 34-46. https://doi.org/10.5574/KSOE.2014.28.1.034
  10. Choung, J., Nam, W., Lee, D., Song, S.Y., 2014b. Failure Strain Formulation Via Average Stress Triaxiality of an High Strength Steel for Arctic Structures. Ocean Engineering, 91, 218-226. https://doi.org/10.1016/j.oceaneng.2014.09.019
  11. Driemeier, L., Brűnig, M., Micheli, G., Alves, M., 2010. Experiments on Stress-triaxiality Dependence of Material Behavior of Aluminum alloys. Mechanics of Materials, 42(2), 207-217. https://doi.org/10.1016/j.mechmat.2009.11.012
  12. Dunand, M., Mohr, D., 2011. On the Predictive Capabilities of the Shear Modified Gurson and the Modified Mohr-Coulomb Fracture Models over a Wide Range of Stress Triaxialities and Lode Angles. Journal of the Mechanics and Physics of Solids, 59(7), 1374-1394. https://doi.org/10.1016/j.jmps.2011.04.006
  13. Gao, X., Kim, J., 2006. Modeling of Ductile Fracture:Significance of Void Coalescence. International Journal of Solids and Structures, 43(20), 6277-6293. https://doi.org/10.1016/j.ijsolstr.2005.08.008
  14. Gurson, A.L., 1977. Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I - Yield Criteria and Flow Rules for Porous Ductile Media. Journal of Engineering Materials and Technology, 99(1), 2-15. https://doi.org/10.1115/1.3443401
  15. Lemaitre, J., 1985. A Continuous Damage Mechanics Model for Ductile Fracture. Journal of Engineering Materials and Technology, 107(1), 83-89. https://doi.org/10.1115/1.3225775
  16. Lou, Y., Huh, H., Lim, S., Pack, K., 2012. New Ductile Fracture Criterion for Prediction of Fracture Forming Limit Diagrams of Sheet Metals. International Journal of Solids and Structures, 49(25), 3605-3615. https://doi.org/10.1016/j.ijsolstr.2012.02.016
  17. Bao, Y., 2005. Dependence of Ductile Crack Formation in Tensile Tests on Stress Triaxiality, Stress and Strain Ratios. Engineering Fracture Mechanics, 72(4), 505-522. https://doi.org/10.1016/j.engfracmech.2004.04.012
  18. Bai, Y., Wierzbicki, T., 2008. A New Model of Metal Plasticity and Fracture with Pressure and Lode Dependence. International Journal of Plasticity, 24(6), 1071-1096. https://doi.org/10.1016/j.ijplas.2007.09.004
  19. Bai, Y., Wierzbicki, T., 2010. Application of Extended Mohr-Coulomb Criterion to Ductile Fracture. International Journal of Fracture, 161(1), 1-20. https://doi.org/10.1007/s10704-009-9422-8
  20. Besson, J., 2009. Continuum Models of Ductile Fracture: A review. International Journal of Damage Mechanics, 19(1), 3-52.
  21. Benzerga, A.A., Surovik, D., Keralavarma, S.M., 2012. On the Path-dependence of the Fracture Locus in Ductile Materials-analysis. International Journal of Plasticity, 37, 157-170. https://doi.org/10.1016/j.ijplas.2012.05.003
  22. Bonora, N., Ruggiero, A., Esposito, L., Gentile, D., 2006. CDM Modeling of Ductile Failure in Ferritic Steels: Assessment of the Geometry Transferability of Model Parameters. International Journal of Plasticity, 22(11), 2015-2047. https://doi.org/10.1016/j.ijplas.2006.03.013
  23. Choung, J., 2009a. Comparative Studies of Fracture Models for Marine Structural Steels. Ocean Engineering, 36(15), 1164-1174. https://doi.org/10.1016/j.oceaneng.2009.08.003
  24. Choung, J., 2009b. Micromechanical Damage Modeling and Simulation of Punch Test. Ocean Engineering, 36(15), 1158-1163. https://doi.org/10.1016/j.oceaneng.2009.08.004
  25. Choung, J., Shim, C.S., Kim, K.S., 2011. Plasticity and Fracture Behaviors of Marine Structural Steel, part III:Experimental Study on Failure Strain. Journal of Ocean Engineering and Technology, 25(3), 53-66. https://doi.org/10.5574/KSOE.2011.25.3.053
  26. Choung, J. Shim C.S., Song H.C., 2012. Estimation of Failure Strain of EH36 High Strength Marine Structural Steel using Average Stress Triaxiality. Marine Structures, 29(1), 1-21. https://doi.org/10.1016/j.marstruc.2012.08.001
  27. American Society for Testing and Materials (ASTM), 2004. E8-04 Standard Test Methods for Tension Testing of Metallic Materials. ASTM.
  28. Bao, Y., Wierzbicki, T., 2004. On Fracture Locus in the Equivalent Strain and Stress Triaxiality Space. International Journal of Mechanical Sciences, 46(1), 81-98. https://doi.org/10.1016/j.ijmecsci.2004.02.006

Cited by

  1. Punching Fracture Simulations of Circular Unstiffened Steel Plates using Three-dimensional Fracture Surface vol.30, pp.6, 2016, https://doi.org/10.5574/KSOE.2016.30.6.474
  2. Ductile Fracture Predictions of High Strength Steel (EH36) using Linear and Non-Linear Damage Evolution Models vol.31, pp.4, 2017, https://doi.org/10.26748/KSOE.2017.08.31.4.288
  3. Ductile fracture prediction of high tensile steel EH36 using new damage functions vol.13, pp.sup1, 2018, https://doi.org/10.1080/17445302.2018.1426433