DOI QR코드

DOI QR Code

Isolation and Characterization of Bacillus Strain as a Potential Biocontrol Agent

환경친화적 미생물농약으로서의 잠재성을 가진 세균의 분리 및 특성

  • Received : 2015.07.22
  • Accepted : 2015.08.20
  • Published : 2015.12.30

Abstract

In this study, to retain a stable bacterial inoculant, Bacillus strains showing antifungal activity were screened. The improved production, antifungal mechanism, and stability of the antifungal metabolite by a selected strain, AF4, a potent antagonist against phytopathogenic Botrytis cinerea, were also investigated. The AF4 strain was isolated from rhizospheric soil of hot pepper and identified as Bacillus subtilis by phenotypic characters and 16S rRNA gene analysis. Strain AF4 did not produce antifungal activity in the absence of a nitrogen source and produced antifungal activity at a broad range of temperatures (25-40℃) and pH (7-10). Optimal carbon and nitrogen sources for the production of antifungal activity were glycerol and casein, respectively. Under improved conditions, the maximum antifungal activity was 140±3 AU/ml, which was higher than in the basal medium. Photomicrographs of strain AF4-treated B. cinerea showed morphological abnormalities of fungal mycelia, demonstrating the role of the antifungal metabolite. The B. subtilis AF4 culture exhibited broad antifungal activity against several phytopathogenic fungi. The antifungal activity was heat-, pH-, solvent-, and protease-stable, indicating its nonproteinous nature. These results suggest that B. subtilis AF4 is a potential candidate for the control of phytopathogenic fungi-derived plant diseases.

Keywords

Antifungal activity;Bacillus subtilis;biological control;PGPR

References

  1. Chaiharn, M., Chunhaleuchanon, S. and Lumyong, S. 2009. Screening siderophore producing bacteria as potential biological control agent for fungal rice pathogens in Thailand. World. J. Microbiol. Biotechnol. 25, 1919-1928. https://doi.org/10.1007/s11274-009-0090-7
  2. Botelho, G. R. and Mendonca-Hagler, L. C. 2006. Fluorescent Pseudomonads associated with the rhizosphere of crop - an overview. Braz. J. Microbiol. 37, 401-416. https://doi.org/10.1590/S1517-83822006000400001
  3. Bhaskar, N., Sudeepa, E. S., Rashmi, H. N. and Tamil, S. A. 2007. Partial purification and characterization of protease of Bacillus proteolyticus CFR3001 isolated from fish processing waste and its antibacterial activities. Bioresour. Technol. 98, 2758-2764. https://doi.org/10.1016/j.biortech.2006.09.033
  4. Besson, F., Chevanet, C. and Michel, G. 1987. Influence of the culture medium on the production of iturin A by Bacillus subtilis. J. Gen. Microbiol. 3, 767-772.
  5. Gu, X., Zheng. Z., Yu, H., Wang, J., Liang, F. and Liu, R. 2005. Optimization of medium constituents for a novel lipopeptide production by Bacillus subtilis MO-01 by a response surface method. Proc. Biochem. 40, 3196-3201. https://doi.org/10.1016/j.procbio.2005.02.011
  6. Getha, K. and Vikineswary, S. 2002. Antagonistic effects of Streptomyces violaceusniger strain G10 on Fusarium oxysporum f.sp. cubense race 4: Indirect evidence for the role of antibiosis in the antagonistic process. J. Ind. Microbiol. Biotechnol. 28, 303-310. https://doi.org/10.1038/sj.jim.7000247
  7. Gerhardt, P., Murray, R. G. E., Costilow, R. N., Nester, E. W., Wood, W. A., Krieg, N. R. and Phillips, G. B. 1981. Manual of methods for general bacteriology. American Society for Microbiology, Washington, D.C.
  8. Garcia-Tabares, F., Herraiz-Tomico, T., Amat-Guerri, F. and Bilbao, J. L. G. 1987. Production of 3-indoleacetic acid and 3-indolelactic acid in Azotobacter vinelandii cultures supplemented with tryptophan. Appl. Microbiol. Biotechnol. 25, 502-506.
  9. Franken, P. 2012. The plant strengthening root endophytic Piriformospora indica: potential application and the biology behind. Appl. Microbiol. Biotechnol. 96, 1455-1464. https://doi.org/10.1007/s00253-012-4506-1
  10. Dye, R., Pal, K. K., Bhatt, D. M. and Chauhan, S. M. 2004. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol. Res. 159, 371-394. https://doi.org/10.1016/j.micres.2004.08.004
  11. Choudhary, D. K. and Johri, B. N. 2009. Interactions of Bacillus spp. and plants - with special reference to induced systemic resistance (ISR). Microbiol. Res. 164, 493-513. https://doi.org/10.1016/j.micres.2008.08.007
  12. Chitarra, G. S., Breeuwer, P., Nout, M. J. R., van Aelst, A. C., Rombouts, F. M. and Abee, T. 2003. An antifungal compound produced by Bacillus subtilis YM10-20 inhibits germination of Penicillium roqueforti conidiospores. J. Appl. Microbiol. 94, 159-166. https://doi.org/10.1046/j.1365-2672.2003.01819.x
  13. Schwyn, B. and Neilands, J. B. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  14. Sansinenea, E. and Ortiz, A. 2011. Secondary metabolites of soil Bacillus spp. Biotechnol. Lett. 33, 1523-1538. https://doi.org/10.1007/s10529-011-0617-5
  15. Paul, D. and Lade, H. 2014. Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron. Sustain. Dev. 34, 737-752. https://doi.org/10.1007/s13593-014-0233-6
  16. Palaniyandi, S. A., Yang, S. H., Zhang, L. and Suh, J. W. 2013. Effects of actinobacteria on plant disease suppression and growth promotion. Appl. Microbiol. Biotechnol. 97, 9621-9636. https://doi.org/10.1007/s00253-013-5206-1
  17. Montealegre, J. R., Reyes, R., Perez, L. M., Herrera, R., Silva, P. and Besoain, X. 2003. Selection of bioantagonistic bacteria to be used in biological control of Rhizoctonia solani in tomato. Electron. J. Biotechnol. 6, 115-127.
  18. Mizumoto, S. and Shoda, M. 2007. Medium optimization of antifungal lipopeptide, iturin A, production by Bacillus subtilis in solid-state fermentation by response surface methodology. Appl. Microbiol. Biotechnol. 76, 101-108. https://doi.org/10.1007/s00253-007-0994-9
  19. Li, W., Robertsb, D. P., Dery, P. D., Meyer, S. L. F., Lohrke, S., Lumsden, R. D. and Hebbar, K. P. 2002. Broad spectrum antibiotic activity and disease suppression by the potential biocontrol agent Burkholderia ambifaria BC-F. Crop Prot. 21, 129-135. https://doi.org/10.1016/S0261-2194(01)00074-6
  20. Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115-175, In E. Stackebrandt and M. Goodfellow (eds.), Nucleic acid techniques in bacterial systematics. John Wiley and Sons, New York.
  21. Kishore, G. K., Pande, S. and Podile, A. R. 2005. Biological control of collar rot disease with broad-spectrum antifungal bacteria associated with groundnut. Can. J. Microbiol. 51, 123-132. https://doi.org/10.1139/w04-119
  22. Vyas, P., Rahi, P., Chadh, B. S. and Gulati, A. 2014. Statistical optimization of medium components for mass production of plant growth-promoting microbial inoculant Pseudomonas trivialis BIHB 745 (MTCC5336). Indian J. Microbiol. 54, 239-241. https://doi.org/10.1007/s12088-013-0425-9
  23. Tang, Y. W. and Bonner, J. 1947. The enzymatic inactivation of indoleacetic acid I. Some characteristics of the enzyme contained in pea seedlings. Arch. Biochem. 13, 17-25.
  24. Szeszak, F. and Szabo, G. 1967. Antibiotic production of hyphal fractions of Streptomyces griseus. Appl. Microbiol. 15, 1010-1013.
  25. Slininger, P. and Shea-Wilbur, M. 1995. Liquid-culture pH, temperature, and carbon (not nitrogen) source regulate phenazine productivity of take-all biocontrol agent Pseudomonas fluorescens 2 - 79. Appl. Microbiol. Biotechnol. 43, 794-800. https://doi.org/10.1007/BF02431910