DOI QR코드

DOI QR Code

LPS Stimulated B Lymphocytes Inhibit the Differentiation of Th1 Lymphocytes

LPS에 의해 자극된 B 림프구에 의한 Th1 림프구 분화 억제

Kim, Ha-Jeong
김하정

  • Received : 2015.09.20
  • Accepted : 2015.10.20
  • Published : 2015.12.30

Abstract

The lymphocyte component of the immune system is divided into B lymphocytes and T lymphocytes. B lymphocytes produce antibodies (humoral immunity) via maturation into plasma cells, and T lymphocytes kill other cells or organisms (cellular immunity). A traditional immunological paradigm is that B lymphocyte and T lymphocyte interactions are a one-way phenomenon, with T lymphocytes helping to induce the terminal differentiation of B lymphocytes into immunoglobulin class-switched plasma cells. A deficiency of T lymphocytes was reported to result in defective B lymphocyte function. However, evidence for a reciprocal interaction between B and T lymphocytes is emerging, with B lymphocytes influencing the differentiation and effector function of T lymphocytes. For example, B lymphocytes have been shown to induce direct tolerance of antigen-specific CD8+ T lymphocytes and induce T lymphocytes anergy via transforming growth factor-beta (TGF-β) production. The present study showed that LPS-stimulated B lymphocytes inhibited the differentiation of Th1 lymphocytes by inhibiting the production of interleukin-12 (IL-12) from dendritic cells. An interaction between the B lymphocytes and dendritic cells was not needed for this inhibition, and the B lymphocytes did not alter dendritic cell maturation. B lymphocyte-derived soluble factor (BDSF) suppressed the LPS-induced IL-12p35 transcription in the dendritic cells. Overall, these results point to a novel B lymphocyte- mediated immune suppressive mechanism. The findings cast doubt on the traditional paradigm of immunological interactions involving B lymphocyte and T lymphocyte interactions.

Keywords

B lymphocytes;Th1 lymphocytes;IL-12;immune regulation

References

  1. Barbera-Guillem, E., Nelson, M. B., Barr, B., Nyhus, J. K., May, K. F. Jr, Feng, L. and Sampsel, J. W. 2000. B lymphocyte pathology in human colorectal cancer. Experimental and clinical therapeutic effects of partial B cell depletion. Cancer Immunol. Immunother. 48, 541-549. https://doi.org/10.1007/PL00006672
  2. Aste-Amezaga, M., Ma, X., Sartori, A. and Trinchieri, G., 1998. Molecular mechanisms of the induction of IL-12 and its inhibition by IL-10. J. Immunol. 160, 5936-5944.
  3. Agarwal, A., Verma, S., Burra, U., Murthy, N. S., Mohanty, N. K. and Saxena, S. 2006. Flow cytometric analysis of Th1 and Th2 cytokines in PBMCs as a parameter of immunological dysfunction in patients of superficial transitional cell carcinoma of bladder. Cancer Immunol. Immunother. 55, 734- 743. https://doi.org/10.1007/s00262-005-0045-2
  4. Kanazawa, M., Yoshihara, K., Abe, H., Iwadate, M., Watanabe, K., Suzuki, S., Endoh, Y., Takita, K., Sekikawa, K., Takenochita, S., Ogata, T. and Ohto, H. 2005. Effects of PSK on T and dendritic cells differentiation in gastric or colorectal cancer patients. Anticancer Res. 25, 443-449.
  5. Hung, K., Hayashi, R., Lafond-Walker, A., Lowenstein, C., Pardoll, D. and Levitsky, H. 1998. The central role of CD4(+) T cells in the antitumor immune response. J. Exp. Med. 188, 2357-2368. https://doi.org/10.1084/jem.188.12.2357
  6. Houbiers, J. G., van der Burg, S. H., van de Watering, L. M., Tollenaar, R. A., Rrand, A., van de Velde, C. J. and Melief, C. J. 1995. Antibodies against p53 are associated with poor prognosis of colorectal cancer. Br. J. Cancer 72, 637-641. https://doi.org/10.1038/bjc.1995.386
  7. Galon, J., Costes, A., Sanchez-Cabo, F., Kirilovsky, A., Mlecnik, B., Lagorce-Pages, C., Tosolini, M., Camus, M., Berger, A., Wind, P., Zinzindohoue, F., Bruneval, P., Cugnenc, P. H., Trajanoski, Z., Fridman, W. H. and Pages, F. 2006. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960-1964. https://doi.org/10.1126/science.1129139
  8. Del Vecchio, M., Bajetta, E., Canova, S., Lotze, M. T., Wesa, A., Parminani, G. and Anichini, A. 2007. Interleukin-12: biological properties and clinical application. Clin. Cancer Res. 13, 4677-4685. https://doi.org/10.1158/1078-0432.CCR-07-0776
  9. Chung, C. Y., Ysebaert, D., Berneman, Z. N. and Cools, N. 2013. Dendritic cells: cellular mediators for immunological tolerance. Clin. Dev. Immunol. 2013, 972865.
  10. Chapoval, A. I., Fuller, J. A., Kremlev, S. G., Kamdar, S. J. and Evans, R. 1998. Combination chemotherapy and IL-15 administration induce permanent tumor regression in a mouse lung tumor model: NK and T cell-mediated effects antagonized by B cells. J. Immunol. 161, 6977-6984.
  11. Sheu, B. C., Lin, R. H., Lien, H. C., Ho, H. N., Hsu, S. M. and Huang, S. C. 2001. Predominant Th2/Tc2 polarity of tumor-infiltrating lymphocytes in human cervical cancer. J. Immunol. 167, 2972-2978. https://doi.org/10.4049/jimmunol.167.5.2972
  12. Shah, S., Divekar, A. A., Hilchey, S. P., Cho, H. M., Newman, C. L., Shin, S. U., Nechustan, H., Challita-Eid, P. M., Segal, B. M., Yi, K. H. and Rosenblatt, J. D. 2005. Increased rejection of primary tumors in mice lacking B cells: inhibition of anti-tumor CTL and TH1 cytokine responses by B cells. Int. J. Cancer 117, 574-586. https://doi.org/10.1002/ijc.21177
  13. Rowley, D. A. and Stach, R. M. 1998. B lymphocytes secreting IgG linked to latent transforming growth factor-beta prevent primary cytolytic T lymphocyte responses. Int. Immunol. 10, 355-363. https://doi.org/10.1093/intimm/10.3.355
  14. Rosser, E. C. and Mauri, C. 2015. Regulatory B cells: origin, phenotype, and function. Immunity 42, 607-612 https://doi.org/10.1016/j.immuni.2015.04.005
  15. Perricone, M. A., Smith, K. A., Claussen, K. A., Plog, M. S., Hempel, D. M., Roberts, B. L., St George, J. A. and Kaplan, J. M. 2004. Enhanced efficacy of melanoma vaccines in the absence of B lymphocytes. J. Immunother. 27, 273-281. https://doi.org/10.1097/00002371-200407000-00003
  16. Mitsuhashi, M., Liu, J., Cao, S., Shi, X. and Ma, X. 2004. Regulation of interleukin-12 gene expression and its anti-tumor activities by prostaglandin E2 derived from mammary carcinomas. J. Leukoc. Biol. 76, 322-332 https://doi.org/10.1189/jlb.1203641
  17. Ma, X., Sun, J., Papasavvas, E., Riemann, H., Robertson, S., Marchall, J., Bailer, R. T., Moore, A., Donnelly, R. P., Trinchieri, G. and Montaner, L. J. 2000. Inhibition of IL-12 production in human monocyte-derived macrophages by TNF. J. Immunol. 164, 1722-1729. https://doi.org/10.4049/jimmunol.164.4.1722
  18. Kim, S., Elkon, K. B. and Ma, X. 2004. Transcriptional suppression of interleukin-12 gene expression following phagocytosis of apoptotic cells. Immunity 21, 643-653. https://doi.org/10.1016/j.immuni.2004.09.009
  19. van Herpen, C. M., Looman, M., Zonneveld, M., Scharenborg, N., de Wilde, P. C., van de Locht, L., Merkx, M. A., Adema, G. J. and de Mulder, P. H. 2004. Intratumoral administration of recombinant human interleukin 12 in head and neck squamous cell carcinoma patients elicits a T-helper 1 profile in the locoregional lymph nodes. Clin. Cancer Res. 10, 2626-2635. https://doi.org/10.1158/1078-0432.CCR-03-0304
  20. Tatsumi, T., Huang, J., Gooding, W. E., Gambotto, A., Tatsumi, T., Huang, J., Gooding, W. E., Gambotto, A., Robbins, P. D., Vujuanovic, N. L., Alber, S. M., Watkins, S. C., Okada, H. and Storkus, W. J. 2003. Intratumoral delivery of dendritic cells engineered to secrete both interleukin (IL)-12 and IL-18 effectively treats local and distant disease in association with broadly reactive Tc1-type immunity. Cancer Res. 63, 6378-6386.
  21. Tangye, S. G., Ma, C. S., Brink, R. and Deenick, E. K. 2013. The good, the bad and the ugly - TFH cells in human health and disease. Nat. Rev. Immunol. 13, 412-426. https://doi.org/10.1038/nri3447
  22. Silverstein, A. M. 2003. Cellular versus humoral immunology: a century-long dispute. Nat. Immunol. 4, 425-428.