Modeling on Ultrasonic Velocity in Concrete Considering Micro Pore Structure and Loading Conditions

공극구조 및 하중조건에 따른 콘크리트의 초음파 속도 모델링

  • 김윤용 (충남대학교 토목공학과) ;
  • 오광진 (한국시설안전공단) ;
  • 박기태 (한국건설기술연구원) ;
  • 권성준 (한남대학교 건설시스템공학과)
  • Received : 2014.11.19
  • Accepted : 2014.01.20
  • Published : 2015.03.28


For a long time, evaluation of soundness and strength in concrete has been performed through ultrasonic velocity(UV), which is essential work in field assessment. Porosity in concrete is a major parameter indicating durability and strength, and UV passing concrete depends on porosity variation. In this paper, a modeling on UV through concrete is carried out considering porosity and the results are verified with those from test. Additionally UV in concrete under compression/tension loading condition is measured and UV modeling with loading condition is performed. Up to 50% of loading ratio, UV slightly increases and greatly drops at peak load in compression region, however it fluctuates in tensile region due to micro cracking in matrix. The proposed model shows a reasonable agreement with test results in control and compression region, and needs modification for tensile region considering micro cracks and local aggregate interlocking.


Ultrasonic Velocity;Durability;Porosity;Modeling;Tensile Stress;Compressive Stress


Grant : FRP Hybrid Bar를 활용한 해양항만구조물 수명향상 기술 개발

Supported by : 한국건설기술연구원


  1. S. J. Kwon and S. S. Park, "Non Destructive Technique for Steel Corrosion Detection Using Heat Induction and IR Thermography," Journal of the Korea Institute for Structural Maintenance and Inspection, Vol.16, No.2, pp.40-48, 2012.
  2. J. H. Bungey, The Testing of Concrete in Structures, London: Blackie; pp.28-63, 1944.
  3. W. J. McCarter, T. M. Chrisp, G. Starrs, and J. Blewett, "Characterization and Monitoring of Cement-based Systems using Intrinsic Electrical Property Measurements," Cement and Concrete Research, Vol.33, pp.197-206, 2003.
  4. S. J. Kwon, Maria Q. Feng, and S. S. Park, "Characterization of Electromagnetic Properties for Durability Performance and Saturation in Hardened Cement Mortar," NDT & International, Vol.43, No.2, pp.86-95, 2010.
  5. 한자중, 초음파속도법에 의한 터너라이닝 콘크리트의 품질평가 개선방안 연구, 연세대학교 대학원, 석사학위논문, pp.28-56, 2002.
  6. 김동수, 이광명, "건축토목구조물의 비파괴검사방법-탄성파를 이용한 콘크리트 구조물의 비파괴검사, 한국콘크리트학회 논문집, 제10권, 제2호, pp.40-49, 1998.
  7. R. Jones, A Review of the Non-destructive Testing of Concrete, Institution of Civil Engineers and the British National Committee for Non-destructive Testing, pp.1-7, 1970.
  8. V. R. Sturrup, R. J. Vechio, and H. Caratin, "Pulse velocity as a measure of concrete compressive strength," ACI Special Publication, Vol.82, 1984.
  9. H. W. Song, S. J. Kwon, K. J. Byun, and C. K. Park, "Predicting Carbonation in Early-aged Cracked Concrete," Cement and Concrete Research, Vol.36, No.5, pp.979-989, 2006.
  10. H. W. Song and S. J. Kwon, "Permeability Characteristics of Carbonated Concrete considering Capillary Pore Structure," Cement and Concrete Research, Vol.37, No.6, pp.909-915, 2007.
  11. S. S. Park, S. J. Kwon, S. H. Jung, and S. W. Lee, "Modeling of Water Permeability in Early aged Concrete with Cracks based on Micro Pore Structure," Construction and Building Materials, Vol.27, No.1, pp.597-604, 2012.
  12. 권성준, M. Q. Feng, "적외선 화상기법을 이용한 시멘트 모르타르 특성의 실험적 평가", 대한토목학회 논문집, 제30권, 제1A호, pp.53-59, 2010.
  13. N. Banthia, A. Biparva, and S. Mindes, "Permeability of Concrete under Stress," Cement & Concrete Research, Vol.31, pp.213-220. 2005
  14. M. Hoseini, V. Bindiganavile, and N. Banthia, "The Effect of Mechanical Stress on Permeability," Cement & Concrete Composites, Vol.31, pp.213-220, 2009.
  15. 유경석, 김익범, 김지상, "굵은 골재 최대치수의 변화에 따른 초음파 속도 특성", 한국콘크리트학회 학술대회 논문집, pp.691-692, 2012.
  16. K. Maekawa, T. Ishida, and T. Kishi, "Multi-scale Modeling of Concrete Performance," Journal of Advanced Concrete Technology, Vol.1, No.2, pp.91-126, 2003.
  17. T. Ishida, K. Maekawa, and T. Kishi, "Enhanced Modeling of Moisture Equilibrium and Transport in Cementitious Materials under Arbitrary Temperature and Relative Humidity History," Cement and Concrete Research, Vol.37, pp.565-578, 2007.
  18. T. Ishida and K. Maekawa, "Modeling of Durability Performance of Cementitious Materials and Structures based on Thermo-hygro Physics, Rilem Proceeding PRO 29," Life Prediction and Aging Management of Concrete Structures, pp.39-49, 2003.
  19. S. J. Kwon and H. W. Song, "Analysis of Carbonation Behavior in Concrete using Neural Network Algorithm and Carbonation Modeling," Cement and Concrete Research, Vol.40, No.1, pp.119-127, 2010.
  20. W. M. K. Roddis, Concrete Bridge Deck Assessment using Thermography and Radar, Master Thesis, Department of Civil Engineering, MIT, Cambridge, 1987.
  21. U. B. Halabe, A. Sotoodehnia, K. R. Maser, and E. A. Kausel, "Modeling the Electro-magnetic Properties of Concrete," ACI Mater J, Vol.90, pp.552-563, 1993.
  22. 이학수, 권성준, "공극률을 이용한 고성능 콘크리트의 압축강도 특성 모델링", 한국구조물진단유지관리공학회 논문집, 제16권, 제6호, pp.124-133, 2012.
  23. BS 1881 : Part 203, Recommendations for Measurement of Velocity of Ultrasonic Pulses in Concrete, British Standards Institution, pp.56-58, 1986.
  24. A. M. Neville, Properties of Concrete, London: Pitman, pp.12-62, 1963.