Graphene/BaCrO4 Nanocomposites Catalyzed Photodegradation and Kinetics Study of Organic Dyes

  • Received : 2014.12.02
  • Accepted : 2015.01.07
  • Published : 2015.03.31


The $BaCrO_4$ nanoparticles were synthesized from a 0.1 M $K_2CrO_4$ and 0.1 M $BaCO_3$ solution with stirring for 10 h. The product was washed several times with acetone and heated to $700^{\circ}C$ for 6 h. At that time, the color of mixture was a greenish yellow. The graphene/$BaCrO_4$ nanocomposites were prepared with graphene and $BaCrO_4$ nanoparticles by stirring in tetrahydrofuran and heated in an electric furnace at $700^{\circ}C$ for 2 h. The $BaCrO_4$ nanoparticles, graphene/$BaCrO_4$ and heated graphene/$BaCrO_4$ nanocomposites were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The graphene/$BaCrO_4$ nanocomposites and heated graphene/$BaCrO_4$ nanocomposites were evaluated as a photocatalyst and discussed about kinetics study for the degradation of organic dyes, such as methylene blue and rhodamine B under ultraviolet light irradiation at 254 nm.


Supported by : Sahmyook University


  1. H. Wang, S. H. Baek, J. H. Lee, and S. W. Lim, "High photocatalytic activity of silver-loaded ZnO-$SnO_2$ coupled catalysts", Chem. Eng. J., 146, 355 (2009).
  2. A. Hagfeldt and M. Graetzel, "Light-Induced Redox Reactions in Nanocrystalline Systems", Chem. Rev., 95, 49 (1995).
  3. M. D. Hernandez-Alonso, F. Fresno, S. Suarez, and J. M. Coronado, "Development of alternative photocatalysts to $TiO_2$: Challenges and opportunities", Energy Environ. Sci., 2, 1231 (2009).
  4. W. C. Oh, M. Chen, K. Cho, C. Kim, Z. Meng, and L. Zhu, "Synthesis of graphene-CdSe composite by a simple hydrothermal method and its photocatalytic degradation of organic dyes", Chin. J. Catal., 32, 1577 (2011).
  5. K. R. Gopidas, M. Bohorquez, and P. V. Kamat, "Photophysical and photochemical aspects of coupled semiconductors: Charge-transfer processes in colloidal CdS-$TiO_2$ and CdSAgI systems", J. Phys. Chem., 94, 6435 (1990).
  6. J. Jortner and C. N. R. Rao, "Nanostructured advanced materials. Perspectives and directions", Pure Appl. Chem., 74(9), 1491 (2002).
  7. S. Rehman, R. Ullah, A. M. Butt, and N. D. Gohar, "Strategies of making $TiO_2$ and ZnO visible light active", J. Hazard. Mater., 170, 560 (2009).
  8. J. L. Yang, S. J. An, W. I. Park, G. C. Yi, and W. Choi, "Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition", Adv. Mater., 16, 1661 (2004).
  9. S. R. Thakare, S. R. Patil, and M. D. Choudhary, "Undoped, single phase barite $BaCrO_4$ photocatalyst for the degradation of methylene blue under visible light", Indian J. Chem., Sect. A., 49, 54 (2010).
  10. Y. I. Kim, S. Salim, M. J. Huq, and T. E. Mallouk, "Visiblelight photolysis of hydrogen iodide using sensitized layered semiconductor particles", J. Am. Chem. Soc., 113, 9561 (1991).
  11. J. Economy, D. T. Meloon Jr., and R. L. Ostrozynski, "Supported barium chromate - A new oxidation catalyst", J. Catal., 4, 446 (1965).
  12. J. Yin, Z. Zou, and J. Ye, "Photophysical and photocatalytic properties of new photocatalysts $MCrO_4$ (M=Sr, Ba)", Chem. Phys. Lett., 378, 24 (2003).
  13. A. K. Geim and K. S. Novoselov, "The rise of graphene", Nat. Mater., 6, 183 (2007).
  14. C. Wang, L. Zhan, W. M. Qiao, and L. C. Ling, "Preparation of graphene nanosheets through detonation", New Carbon Mater., 26, 21 (2011).
  15. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, "Graphene and Graphene Oxide: Synthesis, Properties, and Applications", Adv. Mater., 22, 3906 (2010).
  16. A. A. Balandin, S. Ghosh, W. Bao, I. Cailzo, D. Teweldebrhan, F. Miao, and C. N. Lau, "Superior Thermal Conductivity of Single-Layer Graphene", Nano Lett., 8, 902 (2008).
  17. M. D. Stoller, S. J. Park, Y. Zhu, J. An, and R. S. Ruoff, "Graphene-Based Ultracapacitors", Nano Lett., 8, 3498 (2008).
  18. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Funderberg, J. Hone, P. Kim, and H. L. Stormer, "Ultrahigh electron mobility in suspended graphene", Solid State Commun., 146, 351 (2008).
  19. C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene", Science, 321, 385 (2008).
  20. R. M. Westervelt, "Applied Physics-Graphene Nanoelectronics", Science, 320, 324 (2008).
  21. Y. W. Zhu, S. Murali, M. D. Stoller, A. Velamakanni, R. D. Piner, and R. S. Ruoff, "Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors", Carbon, 48, 2106 (2010).
  22. T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. H. Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud'Homme, and L. C. Brinson, "Functionalized graphene sheets for polymer nanocomposites", Nature Nanotechnol., 3, 327 (2008).