DOI QR코드

DOI QR Code

Graphene/BaCrO4 Nanocomposites Catalyzed Photodegradation and Kinetics Study of Organic Dyes

  • Received : 2014.12.02
  • Accepted : 2015.01.07
  • Published : 2015.03.31

Abstract

The $BaCrO_4$ nanoparticles were synthesized from a 0.1 M $K_2CrO_4$ and 0.1 M $BaCO_3$ solution with stirring for 10 h. The product was washed several times with acetone and heated to $700^{\circ}C$ for 6 h. At that time, the color of mixture was a greenish yellow. The graphene/$BaCrO_4$ nanocomposites were prepared with graphene and $BaCrO_4$ nanoparticles by stirring in tetrahydrofuran and heated in an electric furnace at $700^{\circ}C$ for 2 h. The $BaCrO_4$ nanoparticles, graphene/$BaCrO_4$ and heated graphene/$BaCrO_4$ nanocomposites were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The graphene/$BaCrO_4$ nanocomposites and heated graphene/$BaCrO_4$ nanocomposites were evaluated as a photocatalyst and discussed about kinetics study for the degradation of organic dyes, such as methylene blue and rhodamine B under ultraviolet light irradiation at 254 nm.

Acknowledgement

Supported by : Sahmyook University

References

  1. H. Wang, S. H. Baek, J. H. Lee, and S. W. Lim, "High photocatalytic activity of silver-loaded ZnO-$SnO_2$ coupled catalysts", Chem. Eng. J., 146, 355 (2009). https://doi.org/10.1016/j.cej.2008.06.016
  2. A. Hagfeldt and M. Graetzel, "Light-Induced Redox Reactions in Nanocrystalline Systems", Chem. Rev., 95, 49 (1995). https://doi.org/10.1021/cr00033a003
  3. M. D. Hernandez-Alonso, F. Fresno, S. Suarez, and J. M. Coronado, "Development of alternative photocatalysts to $TiO_2$: Challenges and opportunities", Energy Environ. Sci., 2, 1231 (2009). https://doi.org/10.1039/b907933e
  4. W. C. Oh, M. Chen, K. Cho, C. Kim, Z. Meng, and L. Zhu, "Synthesis of graphene-CdSe composite by a simple hydrothermal method and its photocatalytic degradation of organic dyes", Chin. J. Catal., 32, 1577 (2011). https://doi.org/10.1016/S1872-2067(10)60264-1
  5. K. R. Gopidas, M. Bohorquez, and P. V. Kamat, "Photophysical and photochemical aspects of coupled semiconductors: Charge-transfer processes in colloidal CdS-$TiO_2$ and CdSAgI systems", J. Phys. Chem., 94, 6435 (1990). https://doi.org/10.1021/j100379a051
  6. J. Jortner and C. N. R. Rao, "Nanostructured advanced materials. Perspectives and directions", Pure Appl. Chem., 74(9), 1491 (2002). https://doi.org/10.1351/pac200274091491
  7. S. Rehman, R. Ullah, A. M. Butt, and N. D. Gohar, "Strategies of making $TiO_2$ and ZnO visible light active", J. Hazard. Mater., 170, 560 (2009). https://doi.org/10.1016/j.jhazmat.2009.05.064
  8. J. L. Yang, S. J. An, W. I. Park, G. C. Yi, and W. Choi, "Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition", Adv. Mater., 16, 1661 (2004). https://doi.org/10.1002/adma.200306673
  9. S. R. Thakare, S. R. Patil, and M. D. Choudhary, "Undoped, single phase barite $BaCrO_4$ photocatalyst for the degradation of methylene blue under visible light", Indian J. Chem., Sect. A., 49, 54 (2010).
  10. Y. I. Kim, S. Salim, M. J. Huq, and T. E. Mallouk, "Visiblelight photolysis of hydrogen iodide using sensitized layered semiconductor particles", J. Am. Chem. Soc., 113, 9561 (1991). https://doi.org/10.1021/ja00025a021
  11. J. Economy, D. T. Meloon Jr., and R. L. Ostrozynski, "Supported barium chromate - A new oxidation catalyst", J. Catal., 4, 446 (1965). https://doi.org/10.1016/0021-9517(65)90049-7
  12. J. Yin, Z. Zou, and J. Ye, "Photophysical and photocatalytic properties of new photocatalysts $MCrO_4$ (M=Sr, Ba)", Chem. Phys. Lett., 378, 24 (2003). https://doi.org/10.1016/S0009-2614(03)01238-7
  13. A. K. Geim and K. S. Novoselov, "The rise of graphene", Nat. Mater., 6, 183 (2007). https://doi.org/10.1038/nmat1849
  14. C. Wang, L. Zhan, W. M. Qiao, and L. C. Ling, "Preparation of graphene nanosheets through detonation", New Carbon Mater., 26, 21 (2011). https://doi.org/10.1016/S1872-5805(11)60063-2
  15. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, "Graphene and Graphene Oxide: Synthesis, Properties, and Applications", Adv. Mater., 22, 3906 (2010). https://doi.org/10.1002/adma.201001068
  16. A. A. Balandin, S. Ghosh, W. Bao, I. Cailzo, D. Teweldebrhan, F. Miao, and C. N. Lau, "Superior Thermal Conductivity of Single-Layer Graphene", Nano Lett., 8, 902 (2008). https://doi.org/10.1021/nl0731872
  17. M. D. Stoller, S. J. Park, Y. Zhu, J. An, and R. S. Ruoff, "Graphene-Based Ultracapacitors", Nano Lett., 8, 3498 (2008). https://doi.org/10.1021/nl802558y
  18. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Funderberg, J. Hone, P. Kim, and H. L. Stormer, "Ultrahigh electron mobility in suspended graphene", Solid State Commun., 146, 351 (2008). https://doi.org/10.1016/j.ssc.2008.02.024
  19. C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene", Science, 321, 385 (2008). https://doi.org/10.1126/science.1157996
  20. R. M. Westervelt, "Applied Physics-Graphene Nanoelectronics", Science, 320, 324 (2008). https://doi.org/10.1126/science.1156936
  21. Y. W. Zhu, S. Murali, M. D. Stoller, A. Velamakanni, R. D. Piner, and R. S. Ruoff, "Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors", Carbon, 48, 2106 (2010). https://doi.org/10.1016/j.carbon.2010.01.050
  22. T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. H. Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud'Homme, and L. C. Brinson, "Functionalized graphene sheets for polymer nanocomposites", Nature Nanotechnol., 3, 327 (2008). https://doi.org/10.1038/nnano.2008.96