DOI QR코드

DOI QR Code

Preparation and Physical Properties of Poly(lactic acid) Bio-Composites using Surface Modified Microfibriled Celluloses

  • Yeo, Jun-Seok (Department of Polymer Science & Engineering, Center for Photofunctional Energy Materials, Dankook University) ;
  • Seong, Dong-Wook (Department of Polymer Science & Engineering, Center for Photofunctional Energy Materials, Dankook University) ;
  • Hwang, Seok-Ho (Department of Polymer Science & Engineering, Center for Photofunctional Energy Materials, Dankook University)
  • Received : 2015.02.23
  • Accepted : 2015.03.03
  • Published : 2015.03.31

Abstract

The surface modification of microfibriled cellulose (MFC) was carried out through the hydrolysis-condensation reaction using (3-aminopropyl)triethoxysilane (APS) and 3-glycidyloxypropyltriethoxysilane (GPS) and then the modified cellulose was compounded with bio-degradable poly(lactic acid) (PLA). Also, pristine MFC was compounded with PLA as a control groups. The confirmation of surface modification for the pristine MFC was characterized by FT-IR and SEM/EDX. The thermal and mechanical properties of the PLA/MFC composites depended on the content of MFC and the type of silane coupling agents. From the thermal, morphological and mechanical behaviors of the PLA/MFC composites, it was found that GPS-MFC was more successful to improve the interface adhesion between PLA matrix and the surface of MFC than that of APS-MFC.

Acknowledgement

Supported by : 산업통상자원부

References

  1. K. Oksman, M. Skrifvars, and J. F. Selin, "Natural Fibres as Reinforcement in Polylactic Acid (PLA) Composites", Compos. Sci. Technol., 63, 1317 (2003). https://doi.org/10.1016/S0266-3538(03)00103-9
  2. A. K. Bledzki and J. Gassan, "Composites Reinforced with Cellulose Based Fibres", Prog. Polym. Sci., 24, 221 (1999). https://doi.org/10.1016/S0079-6700(98)00018-5
  3. S. Shibata, Y. Cao, and I. Fukumoto, "Lightweight Laminate Composites Made from Kenaf and Polypropylene Fibres", Polym. Testing, 25, 142 (2006). https://doi.org/10.1016/j.polymertesting.2005.11.007
  4. A. Kljun, T. A. S. Benians, F. Goubet, F. Meulewaeter, H. P. Knox, and R. S. Blackburn, "Comparative analysis of crystallinity changes in cellulose I polymers using ATR-FTIR, X-ray diffraction, and carbohydrate-binding module probes", Biomacromolecules, 12, 4121 (2011). https://doi.org/10.1021/bm201176m
  5. J. K. Kang, S. S. Im, Y. M. Lee, and J. R. Haw, "Preparation and Characterization of Polymer Composite Filled with High Content Biomass", Polymer-Korea, 19, 292 (1995).
  6. S. Iwamoto, A. Isogai, and T. Iwata, "Structure and Mechanical Properties of Wet-Spun Fibers Made from Natural Cellulose Nanofibers", Biomacromolecules, 12, 831 (2011). https://doi.org/10.1021/bm101510r
  7. H. Qi, J. Cai, L. Zhang, and S. Kuga, "Properties of Films Composed of Cellulose Nanowhiskers and a Cellulose Matrix Regenerated from Alkali/Urea Solution", Biomacromolecules, 10, 1597 (2009). https://doi.org/10.1021/bm9001975
  8. G. Siqueira, J. Bras, and A. Dufresne, "Cellulosic Bionanocomposites: A Review of Preparation Properties and Application", Polymer, 2, 728 (2010). https://doi.org/10.3390/polym2040728
  9. T. Zimmermann, E. Pohler, and T. Geiger, "Cellulose Fibrils for Polymer Reinforcement", Adv. Eng. Mater., 6, 754 (2004). https://doi.org/10.1002/adem.200400097
  10. T. Nishino, I. Matsuda, and K. Hirao, "All-Cellulose Composite", Macromolecules, 37, 7683 (2004). https://doi.org/10.1021/ma049300h
  11. W. Gindl and J. Keckes, "All-Cellulose Nanocomposite", Polymer, 46, 10221 (2005). https://doi.org/10.1016/j.polymer.2005.08.040
  12. A. P. Mathew, K. Oksman, and M. Sain, "Mechanical Properties of Biodegradable Composites from Poly Lactic Acid (PLA) and Microcrystlline Cellulose (MCC)", J. Appl. Polym. Sci., 97, 2014 (2005). https://doi.org/10.1002/app.21779
  13. J. Lunt, "Large-scale production, properties and commercial applications of polylactic acid polymers", Polym. Degrad. Stab., 59, 145 (1998). https://doi.org/10.1016/S0141-3910(97)00148-1
  14. R. E. Drumright, P. R. Gruber, and D. E. Henton, "Polylactic Acid Technology", Adv. Mater., 12, 1841 (2000). https://doi.org/10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
  15. R. Mehta, V. Kumar, H. Bhuniam, and S. N. Upadhyay, "Synthesis of Poly(Lactic Acid): A Review", J. Macromol. Sci. Part C: Polym. Rev., 45, 325 (2005). https://doi.org/10.1080/15321790500304148
  16. E. T. H. Vink, K. R. Rabago, D. A. Glassner, and P. R. Gruber, "Applications of life cycle assessment to NatureWorks$^{TM}$ polylactide (PLA) production", Polym. Degrad. Stab., 80, 403 (2003). https://doi.org/10.1016/S0141-3910(02)00372-5
  17. L. Jiang, J. Zhang, and M. P. Wolcott, "Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: Reinforcing effects and toughening mechanisms", Polymer, 48, 7632 (2007). https://doi.org/10.1016/j.polymer.2007.11.001
  18. V. Krikorian, and D. J. Pochan, "Crystallization Behavior of Poly(l-lactic acid) Nanocomposites: Nucleation and Growth Probed by Infrared Spectroscopy", Macromolecules, 38, 6520 (2005). https://doi.org/10.1021/ma050739z
  19. S. Zhou, X. Zhang, X. Yu, J. Wang, J. Weng, X. Li, B. Feng, and M. Yin, "Hydrogen Bonding Interaction of Poly(d,l-Lactide)/hydroxyapatite Nanocomposites", Chem. Mater., 19, 247 (2007). https://doi.org/10.1021/cm0619398
  20. E. Bodros, I. Pillin, N. Montrelay, and C. Baley, "Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications?", Compos. Sci. Technol., 67, 462 (2007). https://doi.org/10.1016/j.compscitech.2006.08.024
  21. T. J. chung, B. H. Lee, H. J. Lee, H. J. Kwon, W. B. Jang, H.-J. Kim, and Y. G. Eom, "Performance Evaluation of Bio-Composites Composed of Acetylated Kenaf Fibers and Poly(Lactic acid) (PLA)", Elast. Compos., 46, 195 (2011).
  22. A. Marais, J. J. Kochumalayil, C. Nilsson, L. Fogelstrom, and E. K. Gamstedt, "Toward an alternative compatibilizer for PLA/cellulose composites: Grafting of xyloglucan with PLA", Carbohyd. Polym., 89, 1038 (2012). https://doi.org/10.1016/j.carbpol.2012.03.051
  23. A. N. Frone, S. Berlioz, J.-F. Chailan, and D. M. Panaitescu, "Morphology and thermal properties of PLA-cellulose nanofibers composites", Carbohyd. Polym., 91, 377 (2013). https://doi.org/10.1016/j.carbpol.2012.08.054
  24. L. Suryanegara, A. N. Nakagaito, and H. Yano, "The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites", Compos. Sci. Technol., 69, 1187 (2009). https://doi.org/10.1016/j.compscitech.2009.02.022
  25. J.-S. Yeo and S.-H. Hwang, "Preparation and characteristics of polypropylene-graft-maleic anhydride anchored microfibriled cellulose: its composites with polypropylene", J. Adhes. Sci. Technol., 29, 185 (2015). https://doi.org/10.1080/01694243.2014.980632
  26. R. Agrawal, N. S. Saxena, K. B. Sharma, S. Thomas, and M. S. Sreekala, "Activation energy and crystallization kinetics of untreated and treated oil palm fibre reinforced phenol formaldehyde composites", Mater. Sci. Eng. A., 277, 77 (2000). https://doi.org/10.1016/S0921-5093(99)00556-0
  27. G. H. D. Tonoli, U. P. Rodrigues Filho, H. Savastano, J. Bras, M. N. Belgacem, and F. A. Lahr, "Cellulose modified fibres in cement based composites", Compos. Part A., 40, 2046 (2009). https://doi.org/10.1016/j.compositesa.2009.09.016