Effects of the Mixing of an Active Material and a Conductive Additive on the Electric Double Layer Capacitor Performance in Organic Electrolyte

  • Received : 2015.01.13
  • Accepted : 2015.02.16
  • Published : 2015.03.27


The effects of the mixing of an active material and a conductive additive on the electrochemical performance of an electric double layer capacitor (EDLC) electrode were investigated. Coin-type EDLC cells with an organic electrolyte were fabricated using the electrode samples with different ball-milling times for the mixing of an active material and a conductive additive. The ball-milling time had a strong influence on the electrochemical performance of the EDLC electrode. The homogeneous mixing of the active material and the conductive additive by ball-milling was very important to obtain an efficient EDLC electrode. However, an EDLC electrode with an excessive ball-milling time displayed low electrical conductivity due to the characteristic change of a conductive additive, leading to poor electrochemical performance. The mixing of an active material and a conductive additive played a crucial role in determining the electrochemical performance of EDLC electrode. The optimal ball-milling time contributed to a homogeneous mixing of an active material and a conductive additive, leading to good electrochemical performance of the EDLC electrode.


Supported by : Small and Medium Business Administration of Korea(SMBA)


  1. V. Khomenko, E. Raymundo-Pinero and F. Beguin, J. Power Sources, 177, 643 (2008).
  2. Andrew Burke, J. Power Sources, 91, 37 (2000).
  3. Pawan Sharma and T S. Bhatti, Energy Convers. Manage., 51, 2901 (2010).
  4. F. Beguin, V. Presser, A. Balducci and E. Frackowiak, Adv. Mater., 26(14), 2219 (2014).
  5. E. Frackowiak, Q. Abbas and F. Beguin, J. Energy Chem., 22, 226 (2013).
  6. L. Wei and G. Yushin, Nano Energy, 1, 552 (2012).
  7. S. L. Candelaria, Y. Shao, W. Zhou, X. Li and J. Xiao, Nano Energy, 1, 195 (2012).
  8. E. Franckowiak and F. Beguin, Carbon, 39, 937 (2001).
  9. S. H. Kwon, E. Lee, B. kim, S. kim, B. Lee, M. Kim and J. C. Kim, Curr. Appl. Phys., 14, 603 (2014).
  10. Y. J. Lee, J. C. Jung, J. Yi, S. Baeck, J. R. Yoon and I. K. Song, Curr. Appl. Phys., 10, 682 (2010).
  11. J. R. Miller, R. A Outlaw and B. C. Holloway, Electrochim. Acta, 56, 10443 (2011).
  12. W. Lee, S. Suzuki and M. Miyayama, Electrochim. Acta, 142, 240 (2014).
  13. Z. Yan, L. Ma, Y. Zhu, I. Lahiri, M.G. Hahm, Z. Liu, S. Yang, C. Xiang, W. Lu and Z. Peng, Nano Lett., 7, 58 (2013).
  14. Y. Yamada, O. Kimizuka, K. Machida, S. Suematsu and K. Tamamitsu, Energy Fuels, 24, 3373 (2010).
  15. B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, G. Wang and Y. Yang, J. Power Sources, 158, 773 (2006).
  16. A. Thambidurai, J. K. Lourdusamy, J. V. John and S. Ganesan, Korean J. Chem. Eng., 31, 268 (2014).
  17. C. Kim, J. Lee, J. Kim and K. Yang, Korean J. Chem. Eng., 23, 592 (2006).
  18. A. B. Fuertes, Micropor. Mesopor. Mater., 67, 273 (2004).
  19. T. Ma, L. Liu and Z. Yuan, Chem. Soc. Rev., 42, 3977 (2013).
  20. J. Wei, D. Zhou, Z. Sun, Y. Deng, Y. Xia and D. Zhao, Adv. Funct. Mater., 23(18), 2322 (2013).
  21. Z. Zapata-Benabithe, F. Carrasco-Marin and C. Moreno-Castilla, J. Power Sources, 219, 80 (2012).
  22. H. Lee, H. Kim, K. An and B. Kim, Carbon Lett., 1. 15, 71 (2014).
  23. K. Xia, X. Tian, S. Fei and K. You, Int. J. Hydrogen Energy, 39, 11047 (2014).