Biomass and oil content of microalgae under mixotrophic conditions

Choi, Hee-Jeong;Lee, Seung-Mok

  • Received : 2014.07.15
  • Accepted : 2014.12.27
  • Published : 2015.03.31


The growth of the algae strains Neochloris oleabundans, Botryococcus Braunii and Dunaliella sp. under mixotrophic conditions in the presence of different concentrations of crude glycerol was evaluated with the objective of increasing the biomass growth and algal oil content. A high biomass concentration was characteristic of these strains when grown on crude glycerol compared to autotrophic growth, and 5 g/L glycerol yielded the highest biomass concentration for these strains. Mixotrophic conditions improved both the growth of the microalgae and the accumulation of triacylglycerols (TAGs). The maximum amount of TAGs in the algal strains was obtained in the 5 g/L glycerol growth medium. The fatty acid profiles of the oil for the cultures met the necessary requirements and are promising resources for biofuel production.


Biomass;Glycerol;Microalgae;Mixotrophic;Oil content


  1. Pulz O, Grass W. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 2004;65:635-648.
  2. Borowitzka MA, Moheimani NR. Sustainable biofuels from algae. Mitig. Adapt. Strateg. Glob. Chang. 2013;18:13-25.
  3. Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006;101:87-96.
  4. Rudolfi L, Chini Zittelli G, Bassin N, et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 2009;102:100-112.
  5. Xu H, Miao X, Wu Q. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J. Biotechnol. 2006;126:499-507.
  6. Pittman JK, Dean AP, Osundeko O. The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 2011;102:17-25.
  7. Chen GQ, Chen F. Growing phototrophic cells without light. Biotechnol. Lett. 2006;28:607-616.
  8. Qiao H, Wang G, Zhang X. Isolation and characterization of Chlorella sorokiniana GXNN01(Chlorophyta) with the properties of heterotrophic and microaerobic growth. J. Phycol. 2009;45:1153-1162.
  9. Yang C, Hua Q, Shimizu K. Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochem. Eng. J. 2000;6:87-102.
  10. Zhang H, Wang W, Li Y, Yang W, Shen G. Mixotrophic cultivation of Botryococcus braunii. Biomass Bioenergy. 2011;35: 1710-1715.
  11. Alkhamis Y, Qin JG. Cultivation of isochrysis galbana in phototrophic, heterotrophic, and mixotrophic conditions. BioMed Res. Int. 2013;2013:983465.
  12. Chojnacka K, Noworyta A. Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme Microb. Technol. 2004;34:461-465.
  13. Bouarab L, Dauta A, Loudiki M. Heterotrophic and mixotrophic growth of Micractinium pusillum Fresenius in the presence of acetate and glucose: effect of light and acetate gradient concentration. Water Res. 2004;38:2706-2712.
  14. Thompson JC, He BB. Characterization of crude glycerol from biodiesel production from multiple feedstocks. Appl. Eng. Agric. 2006;22:261-265.
  15. Johnson DT, Taconi KA. The glycerol glut: Options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ. Prog. 2007;26:338-348.
  16. Yang F, Hanna MA, Sun R. Value-added uses for crude glycerol- a byproduct of biodiesel production. Biotechnol. Biofuels. 2002;5:1-10.
  17. Chi Z, Pyle D, Wen Z, Frear C, Chen S. A laboratory study of producing docosahexaenoic acid from biodiesel-water glycerol by microalgal fermentation. Process Biochem. 2007;42: 1537-1545.
  18. Pyle DJ, Garcia RA, Wen Z. Producitng docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition. J. Agric. Food Chem. 2008;56:3933-3939.
  19. Choi HJ, Lee JM, Lee SM. A novel optical panel photobioreactor for cultivation of microalgae. Water Sci. Technol. 2013;67:2543-2548.
  20. Mitra D, van Leenwen J, Lamsal B. Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products. Algal Res. 2012;1:40-48.
  21. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959;37:911-917.
  22. Sobczuk TM, Chisti Y. Potential fuel oils from the microalga Choricystis minor. J. Chem. Technol. Biotechnol. 2010;85: 100-108.
  23. Stehfest K, Toepel J, Wilhelm C. The application of micro-FTIR spectroscopy to analyze nutrient stress-related changes in biomass composition of phytoplankton algae. Plant Physiol. Biochem. 2005;43:717-726.
  24. Andruleviciute V, Makareviciene V, Skorupskaite V, Gumbyte M. Biomass and oil content of Chlorella sp., Haematococcus sp., Nannochloris sp. and Scenedesmus sp. under mixotrophic growth conditions in the presence of technical glycerol. J. Appl. Phycol. 2014;26:83-90.
  25. Ceron Garcia MC, Fernandez Sevilla JM, Acien Fernandez FG, Molina Grima E, Garcia Camacho F. Mixotrophic growth of Phaeodactrylum tricornutum on glycerol: growth rate and fatty acid profile. J. Appl. Phycol. 2000;12:239-248.
  26. Liang Y, Sarkany N, Cui Y. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol. Lett. 2009;31:1043-1049.
  27. Liang Y, Sarkany N, Cui Y, Blackburn JM. Batch stage study of lipid production from crude glycerol derived from yellow grease or animal fats through microalgal fermentation. Bioresour. Technol. 2010;101:6745-6750.
  28. Perez-Garcia O, de-Bashan LE, Hernandez JP, Bashan Y. Efficiency of growth and nutrient uptake from wastewater by heterotrophic, autotrophic, and mixotrophic cultivation of Chlorella vulgaris immobilized with Azospirillum brasilense. J. Phycol. 2010;46:800-812.
  29. Chen YH, Walker TH. Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel- derived crude glycerol. Biotechnol. Lett. 2011;33:1973-1983.
  30. Ramos MJ, Fernandez CM, Casas A, Rodriguez L, Perez A. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour. Technol. 2009;100:261-268.
  31. Kong WB, Yang H, Cao YT, Song H, Hua SF, Xia CG. Effects of glycerol and glucose on the enhancement of biomass, lipid and soluble carbohydrate production by Chlorella vulgaris in mixotrophic cultures. Food Technol. Biotechnol. 2013;51:62-69.

Cited by

  1. Microalgae: a robust “green bio-bridge” between energy and environment pp.1549-7801, 2017,
  2. A novel chemical-biochemical process technology for full exploitation of chicken fat for animal nutrition pp.19322135, 2018,
  3. Effect of cultivation mode on the production of docosahexaenoic acid by Tisochrysis lutea vol.8, pp.1, 2018,
  4. with Glycerol and Triethylamine for Lipid Accumulation: a Viable Way To Alleviate the Inhibitory Effect of Triethylamine on Biomass vol.85, pp.4, 2018,
  5. Advances in microalgal biomass/bioenergy production with agricultural by-products: Analysis with various growth rate models vol.24, pp.2, 2018,


Supported by : National Research Foundation of Korea (NRF)