Abundance and expression of denitrifying genes (narG, nirS, norB, and nosZ) in sediments of wastewater stabilizing constructed wetlands

Chon, Kyongmi;Cho, Jaeweon

  • Received : 2014.10.11
  • Accepted : 2015.01.14
  • Published : 2015.03.31


As expected, the expression of denitrifying genes in a Typha wetland (relatively stagnant compared to other ponds), showing higher nitrogen removal efficiency in summer, was affected by temperature. The abundance and gene transcripts of nitrate reductase (narG), nitrite reductase (nirS), nitric oxide reductase (norB), and nitrous oxide reductase (nosZ) genes in seasonal sediment samples taken from the Acorus and Typha ponds of free surface flow constructed wetlands were investigated using quantitative polymerase chain reaction (Q-PCR) and quantitative reverse transcription PCR (Q-RT-PCR). Denitrifying gene copy numbers ($10^5-10^8$ genes $g^{-1}$ sediment) were found to be higher than transcript numbers-($10^3-10^7$ transcripts $g^{-1}$ sediment) of the Acorus and Typha ponds, in both seasons. Transcript numbers of the four functional genes were significantly higher for Typha sediments, in the warm than in the cold season, potentially indicating greater bacterial activity, during the relatively warm season than the cold season. In contrast, copy numbers and expression of denitrifying genes of Acorus did not provide a strong correlation between the different seasons.


Constructed wetland;Denitrifying genes;quantitative polymerase chain reaction (Q-PCR);quantitative reverse transcription polymerase chain reaction (Q-RT-PCR);Sediments


  1. Kadlec RH. Nitrogen farming for pollution control. J. Environ. Sci. Health. 2005;40:1307-1330.
  2. Park N, Kim JH, Cho J. Organic matter, anion, and metal wastewater treatment in Damyang surface flow constructed wetlands in Korea. Ecol. Eng. 2008;32:68-71.
  3. Vymazal J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007;380:48-65.
  4. Bachand PAM, Horne AJ. Denitrification in constructed free-water surface wetlands: II. Effects of vegetation and temperature. Ecol. Eng. 1999;14:17-32.
  5. Lee CG, Fletcher TD, Sun G. Nitrogen removal in constructed wetland systems. Eng. Life Sci. 2009;9:11-22.
  6. Philippot L, Hallin S, Schloter M. Ecology of denitrifying prokaryotes in agricultural soil. Adv. Agron. 2007;96:249-305.
  7. Bru D, Sarr A, Philippot L. Relative abundances of proteobacterial membrane-bound and periplasmic nitrate reductases in selected environments. Appl. Environ. Microbiol. 2007;73:5971-5974.
  8. Braker G, Fesefeldt A, Witzel KP. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl. Environ. Microbiol. 1998;64:3769-3775.
  9. Braker G, Zhou J, Wu L, Devol AH, Tiedje JM. Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific Northwest marine sediment communities. Appl. Environ. Microbiol. 2000;66:2096-2104.
  10. Henry S, Baudoin E, Lopez-Gutierreza JC, Martin-Laurent F, Brauman A, Philippot L. Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. J. Microbiol. Methods. 2004;59:327-335.
  11. Braker G, Tiedje JM. Nitric oxide reductase (norB) genes from pure cultures and environmental samples. Appl. Environ. Microbiol. 2003;69:3476-3483.
  12. Zumft WG. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 1997;61:533-616.
  13. Zumft WG. Nitric oxide reductases of prokaryotes with emphasis on the respiratory, heme-copper oxidase type. J. Inorg. Biochem. 2005;99:194-215.
  14. Horn MA, Drake HL, Schramm A. Nitrous oxide reductase genes (nosZ) of denitrifying microbial populations in soil and the earthworm gut are phylogenetically similar. Appl. Environ. Microbiol. 2006;72:1019-1026.
  15. Scala DJ, Kerkhof LJ. Nitrous oxide reductase (nosZ) gene-specific PCR primers for detection of denitrifiers and three nosZ genes from marine sediments. FEMS Microbiol. Lett. 1998;162: 61-68.
  16. Stres B, Mahne I, Avgustin G, Tiedje JM. Nitrous oxide reductase (nosZ) gene fragments differ between native and cultivated Michigan soils. Appl. Environ. Microbiol. 2004;70:301-309.
  17. Smith CJ, Osborn AM. Advantages and limitations of quantitative PCR(Q-PCR)-based approaches in microbial ecology. FEMS Microbiol. Ecol. 2009;67:6-20.
  18. Geets J, Cooman MD, Wittebolle L, et al. Real-time PCR assay for the simultaneous quantification of nitrifying and denitrifying bacteria in activated sludge. Appl. Microbiol. Biotechnol. 2007;75:211-221.
  19. Philippot L. Use of functional genes to quantify denitrifiers in the environment. Biochem. Soc. Trans. 2006;34:101-103.
  20. Smith CJ, Nedwell DB, Dong LF, Osborn AM. Evaluation of quantitative polymerase chain reaction-based approaches for determining gene copy and gene transcript numbers in environmental samples. Environ. Microbiol. 2006;8:804-815.
  21. Wallenstein MD, Vilgalys RJ. Quantitative analyses of nitrogen cycling genes in soils. Pedobiologia. 2005;49:665-672.
  22. Chon K, Chang JS, Lee E, Lee J, Ryu J, Cho J. Abundance of denitrifying genes coding for nitrate (narG), nitrite (nirS), and nitrous oxide (nosZ) reductases in estuarine versus wastewater effluent-fed constructed wetlands. Ecol. Eng. 2011;37: 64-69.
  23. Fey A, Eichler S, Flavier S, Chrsitan R, Hofle MG, Guzman CA. Establishment of a real-time PCR-based approach for accurate quantification of bacterial RNA targets in water, using Salmonella as a model organism. Appl. Environ. Microbiol. 2004;70:3618-3623.
  24. Neretin LN, Schippers A, Pernthaler A, Hamann K, Amann R, Jorgensen BB. Quantification of dissimilatory (bi) sulphite reductase gene expression in Desulfobacterium autotrophicum using real time PCR. Environ. Microbiol. 2003;5:660-671.
  25. Wawrik B, Paul JH, Tabita FR. Real-time PCR quantification of rbcL (ribulose-1,5-bisphosphate carboxylase/oxygenase) mRNA in diatoms and pelagophytes. Appl. Environ. Microbiol. 2002;68:3771-3779.
  26. Smith CJ, Nedwell DB, Dong LF, Osborn AM. Diversity and abundance of nitrate reductase genes (narG and napA), nitrite reductase genes (nirS and nrfA), and their transcripts in estuarine sediments. Appl. Environ. Microbiol. 2007;73:3612-3622.
  27. Beller HR, Chain PSG, Letain TE, et al. The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans. J. Bacteriol. 2006;188: 1473-1488.
  28. Henderson SL, Dandie CE, Patten C, et al. Changes in denitrifier abundance, denitrification gene mRNA levels, nitrous oxide emissions and denitrification in anoxic soil microcosm amended with glucose and plant residues. Appl. Environ. Microbiol. 2010;76:2155-2164.
  29. Chon K, Kim Y, Chang NI, Cho J. Evaluating wastewater stabilizing constructed wetland, through diversity and abundance of the nitrite reductase gene nirS, with regard to nitrogen control. Desalination 2010;264:201-205.
  30. Lopez-Gutierrez JC, Henry S, Hallet S, Martin-Laurent F, Catroux G, Philippot L. Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR. J. Microbiol. Methods. 2004;57:399-407.
  31. Park N, Lee J, Chon K, Kang H, Cho J. Investigationg microbial activities of constructed wetlands, with respect to nitrate and sulfate reduction. Desalination Water Treat. 2009;1:172-179.

Cited by

  1. Effects of controlled environmental changes on the mineralization of soil organic matter vol.22, pp.4, 2017,
  2. Diversity and Abundance of the Denitrifying Microbiota in the Sediment of Eastern China Marginal Seas and the Impact of Environmental Factors vol.73, pp.3, 2017,


Supported by : National Research Foundation of Korea (NRF)