DOI QR코드

DOI QR Code

Abundances of triclosan-degrading microorganisms in activated sludge systems

  • Lee, Do Gyun ;
  • Chu, Kung-Hui
  • Received : 2014.10.30
  • Accepted : 2015.02.05
  • Published : 2015.03.31

Abstract

Triclosan is a synthetic antimicrobial agent used in numerous industrial and personal care products. Triclosan collected in wastewater treatment plants can be biodegraded up to 80%. However, little is studied about the abundances of known triclosan-degrading bacteria in activated sludge systems. A previous study reported that Sphingopyxis strain KCY1 isolated from activate sludge can cometabolically degrade triclosan. Recently, a quantitative PCR (qPCR) assay specific to strain KCY1 has been developed. Thus, this study investigated the abundance of strain KCY1 in three different activated sludge wastewater treatments using a qPCR assay. Additionally, ammonia-oxidizing bacteria (AOB), known as triclosan-degraders, and amoA gene were quantified. Strain KCY1 were detected in activated sludge samples from three different wastewater treatment plants. The concentrations of strain KCY1 and AOB were on the order of $10^5-10^6$ gene copies/mL, while amoA gene concentration was on the order of $10^4$ gene copies/mL.

Keywords

Activated sludge;Ammonia-oxidizing Bacteria triclosan;Quantitative PCR;Triclosan-degrading bacteria

References

  1. Sabaliunas D, Webb SF, Hauk A, Jacob M, Eckhoff WS. Environmental fate of triclosan in the River Aire Basin, UK. Water Res. 2003;37:3145-3154. https://doi.org/10.1016/S0043-1354(03)00164-7
  2. Schweizer HP. Triclosan: a widely used biocide and its link to antibiotics. FEMS Microbiol. Lett. 2001;202:1-7. https://doi.org/10.1111/j.1574-6968.2001.tb10772.x
  3. Latch DE, Packer JL, Arnold WA, McNeill K. Photochemical conversion of triclosan to 2,8-dichlorodibenzo-p-dioxin in aqueous solution. J. Photochem. Photobiol. A Chem. 2003;158: 63-66. https://doi.org/10.1016/S1010-6030(03)00103-5
  4. Hundt K, Martin D, Hammer E, Jonas U, Kindermann MK, Schauer F. Transformation of triclosan by Trametes versicolor and Pycnoporus cinnabarinus. Appl. Environ. Microbiol. 2000;66:4157-4160. https://doi.org/10.1128/AEM.66.9.4157-4160.2000
  5. Foran CM, Bennett ER, Benson WH. Developmental evaluation of a potential non-steroidal estrogen: triclosan. Mar. Environ. Res. 2000;50:153-156. https://doi.org/10.1016/S0141-1136(00)00080-5
  6. Braoudaki M, Hilton AC. Low level of cross-resistance between triclosan and antibiotics in Escherichia coli K-12 and E. coli O55 compared to E.coli O157. FEMS Microbiol. Lett. 2004;235: 305-309. https://doi.org/10.1111/j.1574-6968.2004.tb09603.x
  7. Chen X, Casas ME, Nielsen JL, Wimmer R, Bester K. Identification of triclosan-o-sulfate and other transformation products of triclosan formed by activated sludge. Sci. Total Environ. 2015;505:39-46. https://doi.org/10.1016/j.scitotenv.2014.09.077
  8. McAvoy DC, Schatowitz B, Jacob M, Hauk A, Eckhoff WS. Measurement of triclosan in wastewater treatment systems. Environ. Toxicol. Chem. 2002;21:1323-1329. https://doi.org/10.1002/etc.5620210701
  9. Singer H, Mueller S, Tixier C, Pillonel L. Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments. Environ. Sci. Technol. 2002;36: 4998-5004. https://doi.org/10.1021/es025750i
  10. Lee DG, Zhao F, Rezenom YH, Russell DH, Chu KH. Biodegradation of triclosan by a wastewater microorganism. Water Res. 2012;46:4226-4234. https://doi.org/10.1016/j.watres.2012.05.025
  11. Lee DG, Cho KC, Chu KH. Identification of triclosan-degrading bacteria in a triclosan enrichment culture using stable isotope probing. Biodegradation 2014;25:55-65. https://doi.org/10.1007/s10532-013-9640-7
  12. Lee DG, Chu KH. Effects of growth substrate on triclosan biodegradation potential of oxygenase-expressing bacteria. Chemosphere 2013;93:1904-1911. https://doi.org/10.1016/j.chemosphere.2013.06.069
  13. Roh H, Subramanya N, Zhao F, Yu CP, Sandt J, Chu KH. Biodegradation potential of wastewater micropollutants by ammonia- oxidizing bacteria. Chemosphere 2009;77:1084-1089. https://doi.org/10.1016/j.chemosphere.2009.08.049
  14. Hay AG, Dees PM, Sayler GS. Growth of a bacterial consortium on triclosan. FEMS Microbiol. Lett. 2001;36:105-112. https://doi.org/10.1111/j.1574-6941.2001.tb00830.x
  15. Tastan BE, Donmez G. Biodegradation of pesticide triclosan by A. versicolor in simulated wastewater and semi-synthetic media. Pestic. Biochem. Physiol. 2015;118:33-37. https://doi.org/10.1016/j.pestbp.2014.11.002
  16. Yu CP, Ahuja R, Sayler G, Chu KH. Quantitative molecular assay for fingerprinting microbial communities of wastewater and estrogen-degrading consortia. Appl. Environ. Microbiol. 2005;71:1433-1444. https://doi.org/10.1128/AEM.71.3.1433-1444.2005
  17. Harms G, Layton AC, Dionisi HM, et al. Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ. Sci. Technol. 2003;37:343-351. https://doi.org/10.1021/es0257164
  18. Hermansson A, Lindgren PE. Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCR. Appl. Environ. Microbiol. 2001;67:972-976. https://doi.org/10.1128/AEM.67.2.972-976.2001
  19. Rotthauwe JH, Witzel KP, Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 1997;63:4704-4712.
  20. Hoshino T, Terahara T, Tsuneda S, Hirata A, Inamori Y. Molecular analysis of microbial population transition associated with the start of denitrification in a wastewater treatment process. J. Appl. Microbiol. 2005;99:1165-1175. https://doi.org/10.1111/j.1365-2672.2005.02698.x
  21. Araki N, Yamaguchi T, Yamazaki S, Harada H. Quantification of amoA gene abundance and their amoA mRNA levels in activated sludge by real-time PCR. Water Sci. Technol. 2004; 50:1-8.
  22. Geets J, De Cooman M, Wittebolle L, et al. Real-time PCR assay for the simultaneous quantification of nitrifying and denitrifying bacteria in activated sludge. Appl. Microbiol. Biotechnol. 2007;75:211-221. https://doi.org/10.1007/s00253-006-0805-8
  23. Kowalchuk GA, Stephen JR. Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu. Rev. Microbiol. 2001;55:485-529. https://doi.org/10.1146/annurev.micro.55.1.485
  24. Painter H, Loveless J. Effect of temperature and pH value on the growth-rate constants of nitrifying bacteria in the activated- sludge process. Water Res. 1983;17:237-248. https://doi.org/10.1016/0043-1354(83)90176-8
  25. Zhang T, Jin T, Yan Q, et al. Occurrence of ammonia-oxidizing archaea in activated sludges of a laboratory scale reactor and two wastewater treatment plants. J. Appl. Microbiol. 2009;107: 970-977. https://doi.org/10.1111/j.1365-2672.2009.04283.x
  26. Park HD, Wells GF, Bae H, Criddle CS, Francis CA. Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Appl. Environ. Microbiol. 2006;72:5643-5647. https://doi.org/10.1128/AEM.00402-06
  27. Limpiyakorn T, Sonthiphand P, Rongsayamanont C, Polprasert C. Abundance of amoA genes of ammonia-oxidizing archaea and bacteria in activated sludge of full-scale wastewater treatment plants. Bioresour. Technol. 2011;102:3694-3701. https://doi.org/10.1016/j.biortech.2010.11.085
  28. Roh H, Chu KH. A $17{\beta}$-estradiol-utilizing bacterium, Sphingomonas strain KC8: part I - characterization and abundance in wastewater treatment plants. Environ. Sci. Technol. 2010;44:4943-4950. https://doi.org/10.1021/es1001902

Cited by

  1. Triclosan in water, implications for human and environmental health vol.5, pp.1, 2016, https://doi.org/10.1186/s40064-016-3287-x
  2. Performance and mechanism of triclosan removal in simultaneous nitrification and denitrification (SND) process under low-oxygen condition vol.101, pp.4, 2017, https://doi.org/10.1007/s00253-016-7952-3