DOI QR코드

DOI QR Code

Redox Reaction of Multivalent Ions in Glass Melts

  • Kim, Kidong (Department of Materials Science and Engineering, Kunsan National University)
  • Received : 2015.01.19
  • Accepted : 2015.02.12
  • Published : 2015.03.31

Abstract

The redox reaction $M^{(x+n)+}+\frac{n}{2}O^{-2}{\rightleftarrows}M^{x+}+\frac{n}{4}O_2$ of multivalent ions in glass melts influences the melting process and final properties of the glass including the fining (removal of bubbles), infrared absorption and homogenization of melts, reaction between metal electrodes and melts or refractory and melts, and transmission and color of glass. In this review paper, the redox behaviors that occur frequently in the glass production process are introduced and the square wave voltammetry (SWV) is described in detail as an in situ method of examining the redox behavior of multivalent ions in the melt state. Finally, some voltammetry results for LCD glass melts are reviewed from the practical viewpoint of SWV.

Keywords

Redox reaction;Multivalent element;Glass melt;Voltammetry

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. K. Kim, H. Kim, and J. Kim, "Behavior of Oxygen Equilibrium Pressure in CRT Display Glass Melts Doped with Sb and Ce Ions from the Viewpoint of Fining," J. Korean Ceram. Soc., 44 [8] 419-23 (2007). https://doi.org/10.4191/KCERS.2007.44.8.419
  2. K. Kim and Y. Kim, "Voltammetric Approach to Redox Behavior of Various Elements in Cathode Ray Tube Glass Melts," J. Non-Cryst. Solids, 354 [2-9] 553-57 (2008). https://doi.org/10.1016/j.jnoncrysol.2007.07.064
  3. K. Kim, Y. Kim, H. Jung, and Y. Kim, "Voltammetric Approach to Redox Behavior of Various Elements in CRT Glass Melts," Proceedings of the XI International Conference on the Physics of Non-Crystalline Solids, Rhodes, Greece, Oct. 25-Nov. 2 (2006).
  4. K. Kim, H. Kim, and Y. Kim, "Redox Behavior and Diffusivity of Antimony and Cerium Ion in CRT Display Glass Melts, Proceedings of the XXI International Congress on Glass," Strasbourg, France July. 1-6 (2007).
  5. K. Kim, "Fining of Flint Glass Melt Containing Blast Furnace Slag," J. Korean Ceram. Soc., 44 [11] 618-21 (2007). https://doi.org/10.4191/KCERS.2007.44.1.618
  6. K. Kim, H. Kim, and Y. Kim, "Redox Behavior of Sulfur in Flint Glass Melts by Square Wave Voltammetry, Proceedings of the XXI International Congress on Glass," Strasbourg, France July. 1-6 (2007).
  7. K. Kim and H. Kim, "Electrochemical Approach in Plasma Display Panel Glass Melts Doped with Sulfate and Sulfide I. Oxygen Equilibrium Pressure," J. Korean Ceram. Soc., 45 [2] 90-3 (2008). https://doi.org/10.4191/KCERS.2008.45.2.090
  8. K. Kim and H. Kim, "Electrochemical Approach in Plasma Display Panel Glass Melts Doped with Sulfate and Sulfide II. Square Wave Voltammetry," J. Korean Ceram. Soc., 45 [7] 375-79 (2008). https://doi.org/10.4191/KCERS.2008.45.7.375
  9. K. Kim, "Iron Redox Equilibrium and Diffusivity in Mixed Alkali-alkaline Earth-silica Glass Melts," Ceram.-Silik., 55 [1] 54-8 (2011).
  10. K. Kim and H. Kim, "Redox Behavior of Sn and S in Alkaline Earth Borosilicate Glass Melts with 1 mol% $Na_2O$," J. Korean Ceram. Soc., 46 [3] 271-74 (2009). https://doi.org/10.4191/KCERS.2009.46.3.271
  11. K. Kim, "Fining Behavior in Alkaline Earth Aluminoborosilicate Melts Doped with $As_2O_5$ and $SnO_2$," J. Am. Ceram. Soc., 96 [3] 781-86 (2013). https://doi.org/10.1111/jace.12188
  12. K. Kim, H. Kim, and Y. Kim, "Square Wave Voltammetry in Cathode Ray Tube Glass Melt Containing Different Polyvalent Ions(in Korean)," J. Korean Ceram. Soc., 44 [6] 297-302 (2007). https://doi.org/10.4191/KCERS.2007.44.6.297
  13. K. Kim and K. Seo, "Influence of Nitrate on Fining and Sn Redox in Alkali free Aluminoborosilicate Glass Melts," Glass Technol.: Eur. J. Glass Sci. Technol. A, 54 165-68 (2013).
  14. A. W. M. Wondergem-de Best, "Redox Behaviour and Fining of Molten Glass," pp. 5-20, in Ph.D. Thesis, Technical University Eindhoven, Eindhoven, 1994.
  15. H. Bach, F. G. K. Baucke, and D. Krause, Electrochemistry of Glasses and Glass Melts, Including Glass Electrodes; pp. 269-89, Springer-Verlag, Berlin, Heidelberg, 2001.
  16. A. Paul, Chemistry of Glasses, 2nd Ed. pp. 219-45, Chapman and Hall, London, New York, 1990.
  17. C. R. Bamford, Color Generation and Control in Glass; pp. 77-86, Elsevier Scientific Publishing Co., Amsterdam, Oxford, New York, 1977.
  18. J. Hlavac, Glass Science and Technology, Vol. 4, The Technology of Glass and Ceramics, An Introduction; pp. 111-19, Elsevier Scientific Publishing Co., Amsterdam, Oxford, New York, 1983.
  19. E. L. Swarts, Gases in Glass. Proceedings of the 46th Conference on Glass Problems, pp. 62-75, Urbana (USA) 1985. Ed. by C. G. Bergeron, The American Ceramic Society, 1986.
  20. F. E. Woolley, Melting/fining, Engineered Materials Handbook; Vol. 4, Ceramics and Glasses, pp. 386-93, The Materials Information Society, ASM Internatinal, 1992.
  21. O. Corumluoglu and E. Guadagnino, "Determination of Ferrous Iron and Total Iron in Glass by a Colorimetric Method," Glass Technol., 40 [1] 24-8 (1999).
  22. T. Tran and M. P. Brungs, "Application of Oxygen Electrodes in Glass Melts, Part 1. Oxygen Reference Electrode," Phys. Chem. Glasses, 21 [4] 133-40 (1980).
  23. C. Russel, R. Kohl, and H. Schaffer, "Interaction Between Oxygen Activity of $Fe_2O_3$ Doped Soda-lime-silica Glass Melts and Physically Dissolved Oxygen," Glastech. Ber., 61 [8] 209-13 (1988).
  24. O. Lafroukhi, J. Hertz, J. P. Hilger, and G. Cornier, "Electrochemical Measurement of Oxygen Activity in Lead Glass by Means of a Stabilized $ZrO_2$ Sensor, Part 2. Determination of the Equilibrium Constants in the Redox Systems Arsenic and Antimony," Glastech. Ber., 64 [11] 281-90 (1991).
  25. J. P. Hilger and O. Lafroukhi, "Electrochemical Measurement of Oxygen Activity in Lead Glass by Means of a Stabilized $ZrO_2$ Sensor, Part 3. Measurement of the Diffusion Coefficient of Oxygen," Glastech. Ber., 64 [12] 299-304 (1991).
  26. T. Hayashi and W. G. Dorfeld, "Electrochemical Study of $As^{3+}/As^{5+}$ Equilibrium in a Barium Borosilicate Glass Melt," J. Non-Cryst. Solids, 177 331-39 (1994). https://doi.org/10.1016/0022-3093(94)90547-9
  27. M. Yamashita and H. Yamanaka, "Oxygen Activity Change in Soda-lime-silica Glass Melts with or without Refining Agent," Glastech. Ber. Glass Sci. Technol., 70 [12] 371-74 (1997).
  28. F. G. K. Baucke, "Electrochemical Cells for On-line Measurements of Oxygen Fugacities in Glass-forming Melts," Glastech. Ber., 61 [4] 87-90 (1988).
  29. H. Muller-Simon and K. W. Mergler, "Electrochemical Measurement of Oxygen Activity of Glass Melts in Glass Melting Furnaces," Glastech. Ber., 61 [10] 293-99 (1988).
  30. M. Zink, C. Russel, H. Muller-Simon, and K. W. Mergler, "Voltammetric Sensor for Glass Tanks," Glastech. Ber. Glass Sci. Technol., 65 [2] 25-31 (1992).
  31. H. Muller-Simon and K. W. Mergler, "On-line Determination of the Iron Concentration in Industrial Amber Glass Melts," Glastech. Ber. Glass Sci. Technol., 68 [9] 273-77 (1995).
  32. F. G. K. Baucke, R. D. Werner, H. Muller-Simon, and K. W. Mergler, "Application of Oxygen Sensors in Industrial Glass Melting Tanks," Glastech. Ber. Glass Sci. Technol., 69 [3] 57-63 (1996).
  33. H. Muller-Simon, "Temperature Dependence of the Redox State of Iron and Sulfur in Amber Glass Melts," Glastech. Ber. Glass Sci. Technol., 70 [12] 389-91 (1997).
  34. K. Takahashi and Y. Miura, "Electrochemical Studies on Diffusion and Redox Behavior of Various Metal Ions in Some Molten Glasses," J. Non-Cryst. Solids, 38 & 39 527- 32 (1980).
  35. K. Takahashi and Y. Miura, "Electrochemical Studies on Ionic Behavior in Molten Glasses," J. Non-Cryst. Solids, 80 11-9 (1986). https://doi.org/10.1016/0022-3093(86)90375-3
  36. E. Fruede and C. Russel, "Voltammetric Methods for Determining Polyvalent Ions in Glass Melts," Glastech. Ber., 60 [6] 201-04 (1987).
  37. C. Montel, C. Russel, and E. Freude, "Square-wave Voltammetry as a Method for the Quantitative In-situ Determination of Polyvalent Elements in Molten Glass," Glastech. Ber., 61 [3] 59-63 (1988).
  38. C. Russel and E. Freude, "Voltammetric Studies of the Redox Behaviour of Various Multivalent Ions in Soda-lime-silica Glass Melts," Phys. Chem. Glasses, 30 [2] 62-8 (1989).
  39. C. Russel and E. Freude, "Voltammetric Studies in a Sodalime- silica Glass Melt Containing Two Different Polyvalent Ions," Glastech. Ber., 63 [6] 149-53 (1990).
  40. E. Freude and C. Russel, "Iron in Glass Melts - A Voltammetric Investigation," Glastech. Ber., 63 193-97 (1990).
  41. T. Kordon, C. Russel, and E. Freude, "Voltammetric Investigations in $Na_2SO_4$-refined Soda-lime-silica Glass Melts," Glastech. Ber., 63 [8] 213-18 (1990).
  42. C. Russel, "The Electrochemical Behavior of Some Polyvalent Elements in a Soda-lime-silica Glass Melts," J. Non- Cryst. Solids, 119 303-09 (1990). https://doi.org/10.1016/0022-3093(90)90303-4
  43. C. Russel and G. Sprachmann, "Electrochemical Methods for Investigations in Molten Glass, Illustrated at Iron- and Arsenic-doped Soda-lime Silica Glass Melts," J. Non-Cryst. Solids, 127 197-206 (1991). https://doi.org/10.1016/0022-3093(91)90143-T
  44. O. Claussen and C. Russel, "Quantitative In-situ Determination of Iron in a Soda-lime-silica Glass Melt with the Aid of Square-wave Voltammetry," Glastech. Ber., 69 [4] 95-100 (1996).
  45. C. Russel, "EPR and Voltammetric Studies of Iron-containing Mixed Alkali Glasses with the Basic Composition $xNa_2O(16-x)K2O10CaO74SiO_2$," Glastech. Ber. Glass Sci. Technol., 70 17-22 (1997).
  46. O. Claussen and C. Russel, "Voltammetry in a Sulfur and Iron-containing Soda-lime-silica Glass Melt," Glastech. Ber. Glass Sci. Technol., 70 231-37 (1997).
  47. O. Claussen and C. Russel, "Thermodynamics of Some Transition Metal Ions in a Borosilicate Glass Melt," Phys. Chem. Glasses, 38 227-31 (1997).
  48. A. Matthai, D. Ehrt, and C. Russel, "Redox Behavior of Polyvalent Ions in Phosphate Glass Melts and Phosphate Glasses," Glastech. Ber. Glass Sci. Technol., 71 187-92 (1998).
  49. O. Claussen and C. Russel, "Votammetric Study of the Thermodynamics of the $Fe^{3+}/Fe^{2+}$ Equilibrium and the Self Diffusivity of Iron in Glasses with the Basic Composition $74SiO_2(26-x)Na_2O$xCaO," Phys. Chem. Glasses, 39 200-05 (1998).
  50. S. Gerlach, O. Claussen, and C. Russel, "A Voltammetric Study on the Thermodynamics of the $Fe^{3+}/Fe^{2+}$-equilibrium in Alkali-lime-alumosilicate Melts," J. Non-Cryst. Solids, 248 92-8 (1999). https://doi.org/10.1016/S0022-3093(99)00103-9
  51. O. Claussen, S. Gerlach, and C. Russel, "Self-diffusivity of Polyvalent Ions in Silicate Liquids," J. Non-Cryst. Solids, 253 76-83 (1999). https://doi.org/10.1016/S0022-3093(99)00345-2
  52. A. Matthai, D. Ehrt, and C. Russel, "Voltammetric Investigations of the Redox Behaviour of Fe, Ni, Co and Sn Doped Glass Melts of $AR^{(R)}$ and $BK7^{(R)}$ Type," Glastech. Ber. Glass Sci. Technol., 73 [2] 33-8 (2000).
  53. G. von der Goenna and C. Russel, "Redox Equilibria of Polyvalent Elements in Binary $Na_2OxSiO_2$ Melts," Glastech. Ber, Glass Sci. Technol., 73 [4] 105-10 (2000).
  54. C. Russel, "Electrochemical Study on the Redox Behavior of Selenium-containing Soda-lime-silica Melts," Glastech. Ber, Glass Sci. Technol., 74 [1] 1-5 (2001).
  55. H. Jung, K. Kim, H. Kim, and Y. Kim, "Redox Equilibrium of Antimony by Square Wave Voltammetry Method in CRT Display Glass Melts," J. Korean Ceram. Soc., 44 [1] 1-5 (2007). https://doi.org/10.4191/KCERS.2007.44.1.001