DOI QR코드

DOI QR Code

Deformation of Amorphous GeSe2 Film under Uniaxial Pressure Applied at Elevated Temperatures

  • Jin, Byeong Kyou (Department of Materials Science and Engineering, Korea Aerospace University) ;
  • Lee, Jun Ho (Department of Materials Science and Engineering, Korea Aerospace University) ;
  • Yi, Jeong Han (Department of Materials Science and Engineering, Korea Aerospace University) ;
  • Lee, Woo Hyung (Department of Materials Science and Engineering, Korea Aerospace University) ;
  • Shin, Sang Yeol (Department of Materials Science and Engineering, Korea Aerospace University) ;
  • Choi, Yong Gyu (Department of Materials Science and Engineering, Korea Aerospace University)
  • Received : 2015.01.12
  • Accepted : 2015.02.11
  • Published : 2015.03.31

Abstract

In an effort to evaluate the practicability of an imprinting technique for amorphous chalcogenide film in Ge-based compositions, we investigate the deformation behavior of the surface of amorphous $GeSe_2$ film deposited via a thermal evaporation route according to varying static loads applied at elevated temperatures. We observe that, under these static loading conditions, crystallization tends to occur on its surface relatively more easily than in As-based $As_2Se_3$ films. As for the present $GeSe_2$ film, higher processing temperatures are required in order to make its surface reflect the given stamp patterns well; however, in this case, its surface becomes partially crystallized in the monoclinic $GeSe_2$ phase. The increased vulnerability of this amorphous $GeSe_2$ film toward surface crystallization under static loading, when compared with the $As_2Se_3$ counterpart, is explained in terms of the topological aspects of its amorphous structure.

Keywords

Chalcogenide glass;Amorphous Ge-Se film;Imprinting;Surface crystallization

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. Zhang, E. M. Brearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Beson, "Fine Embossing of Chalcogenide Glasses-A New Fabrication Route for Photonic Integrated Circuits," J. Non-Cryst. Solids, 352 [23-25] 2515-20 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.03.025
  2. W. J. Pan, D. Furniss, H. Rowe, C. A. Miller, A. Loni, P. Sewell, T. M. Benson, and A. B. Seddon, "Fine Embossing of Chalcogenide Glasses: First Time Submicron Definition of Surface Embossed Features," J. Non-Cryst. Solids, 353 [13-15] 1302-06 (2007). https://doi.org/10.1016/j.jnoncrysol.2006.10.077
  3. W. J. Pan, H. Rowe, D. Zhang, Y. Zhang, A. Loni, D. Furniss, P. Sewell, T. M. Benson, and A. B. Seddon, "One-Step Hot Embossing of Optical Rib Waveguides in Chalcogenide Glasses," Microw. Opt. Tech. Lett., 50 [7] 1961-63 (2008). https://doi.org/10.1002/mop.23534
  4. Z. G. Lian, W. Pan, D. Furniss, T. M. Benson, A. B. Seddon, T. Kohoutek, J. Orava, and T. Wagner, "Embossing of Chalcogenide Glasses: Monomode Rib Optical Waveguides in Evaporated Thin Films," Opt. Lett., 34 [8] 1234-36 (2009). https://doi.org/10.1364/OL.34.001234
  5. M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, "Patterning Chalcogenide Glass by Direct Resist-Free Thermal Nanoimprint," J. Vac. Sci. Tech. B, 26 [2] 606-10 (2008). https://doi.org/10.1116/1.2890699
  6. T. Han, S. Madden, D. Bulla, and B. L. Davies, "Low Loss Chalcogenide Glass Waveguides by Thermal Nano-Imprint Lithography," Opt. Express, 18 [18] 19286-91 (2010). https://doi.org/10.1364/OE.18.019286
  7. Y. G. Choi, A. Kovalskiy, B. K. Cheong, and H. Jain, "Role of Local Structure in the Phase Change of Ge-Te Films," Chem. Phys. Lett., 534 58-61 (2012). https://doi.org/10.1016/j.cplett.2012.03.032
  8. Y. G. Choi, S. Y. Shin, R. Golovchak, S. Lee, B. K. Cheong, and H. Jain, "EXAFS Spectroscopic Refinement of Amorphous Structures of Evaporation-Deposited Ge-Se Films," J. Alloys Compd., 622 189-93 (2015). https://doi.org/10.1016/j.jallcom.2014.10.036
  9. U. Senapati and A. K. Varshneya, "Viscosity of Chalcogenide Glass-Forming Liquids: An Anomaly in the 'Strong' and 'Fragile' Classification," J. Non-Cryst. Solids, 197 [2-3] 210-18 (1996). https://doi.org/10.1016/0022-3093(95)00628-1
  10. H. Jain, A. Kovalskiy, and A. Miller, "An XPS Study of the Early Stages of Silver Photodiffusion in Ag/a-$As_2S_3$ Films," J. Non-Cryst. Solids, 352 [6-7] 562-66 (2006). https://doi.org/10.1016/j.jnoncrysol.2005.11.044
  11. W. J. Chung, H. S. Seo, B. J. Park, J. T. Ahn, and Y. G. Choi, "Selenide Glass Optical Fiber Doped with $Pr^{3+}$ for UBand Optical Amplifier," ETRI J., 27 [4] 411-17 (2005). https://doi.org/10.4218/etrij.05.0105.0005
  12. C. J. Hill, L. Huang, and A. Jha, "High-Tg $GeS_2$ Based Glasses for Chemical Sensing Applications," J. Mater. Sci-Mater. El., 20 [1] S202-06 (2009).
  13. J. Malek, "Dilatometric Study of Structural Relaxation in Arsenic Sulfide Glass," Thermochim. Acta, 311 [1-2] 183-98 (1998). https://doi.org/10.1016/S0040-6031(97)00466-8
  14. S. Suzuki, T. Kobayashi, H. Ohno, and S. Kamiya, "Viscosity of Glasses in the System As-Se and As-Se-X (X=I, S) in the Transition Region," J. Soc. Mater. Sci. Jpn., 22 134-39 (1973). https://doi.org/10.2472/jsms.22.134
  15. S. M. Song and S. Y. Choi, "Preparation and Characterization of Chalcogenide Glass with IR-Transmittance(In Korean)," J. Korean Ceram. Soc., 32 [12] 1424-32 (1995).
  16. J. A. Savage, P. J. Webber, and A. M. Pitt, "An Assessment of Ge-Sb-Se Glasses as 8 to 12 mm Infrared Optical Materials," J. Mater. Sci., 13 [4] 859-64 (1978). https://doi.org/10.1007/BF00570524
  17. K. N. Madhusoodanan and J. Philip, "Thermal Diffusion near Glass Transition in Ge-Se Glasses Measured by Photoacoustics," Pramana-J. Phys., 32 [6] 821-30 (1989). https://doi.org/10.1007/BF02846002
  18. D. Lezal, J. Zavadil, and M. Prochazka, "Sulfide, Selenide and Telluride Glassy Systems for Optoelectronic Applications," J. Optoelectron. Adv. Mater., 7 [5] 2281-92 (2005).
  19. V. V. Tomaev, Y. S. Tver'yanovich, M. D. Bal'makov, I. A. Zvereva, and A. B. Missyul, "Ionic Conductivity of $(As_2Se_3)_{1-x}$ $(AgHal)_x$ (Hal = I, Br) Nanocomposites," Glass Phys. Chem., 36 [4] 455-62 (2010). https://doi.org/10.1134/S1087659610040097
  20. V. Petkov, D. Qadir, and S. D. Shastri, "Rapid Structure Determination of Disordered Materials: Study of $GeSe_2$ Glass," Solid State Commun., 129 [4] 239-43 (2004). https://doi.org/10.1016/j.ssc.2003.10.007
  21. I. Petri and P. S. Salmon, "Defects in a Disordered World: The Structure of Glassy $GeSe_2$," Phys. Rev. Lett., 84 [11] 2413-16 (2000). https://doi.org/10.1103/PhysRevLett.84.2413
  22. J. C. Mauro and A. K. Varshneya, "Multiscale Modeling of Arsenic Selenide Glass," J. Non-Cryst. Solids, 353 [13-15] 1226-31 (2007). https://doi.org/10.1016/j.jnoncrysol.2006.09.067
  23. M. Fabian, E. Svab, V. Pamukchieva, A. Szekeres, S. Vogel, and U. Ruett, "Study of $As_2Se_3$ and As2Se2Te Glass Structure by Neutron-and X-ray Diffraction Methods," J. Phys. Conf. Ser., 253 [1] 012053 (2010). https://doi.org/10.1088/1742-6596/253/1/012053
  24. J. C. Phillips, "Topology of Covalent Non-Crystalline Solids I: Short-Range Order in Chalcogenide Alloys," J. Non-Cryst. Solids, 34 [2] 153-81 (1979). https://doi.org/10.1016/0022-3093(79)90033-4
  25. R. Azoulay, H. Thibierge, and A. Brenac, "Devitrification Characteristics of $Ge_xSe_{1-x}$ Glasses," J. Non-Cryst. Solids, 18 [1] 33-53 (1975). https://doi.org/10.1016/0022-3093(75)90006-X
  26. R. Frerichs, "New Optical Glasses Transparent in Infrared up to 12 ${\mu}m$," Phys. Rev., 78 643 (1950).