DOI QR코드

DOI QR Code

Effect of Substituting B2O3 for P2O5 in Conductive Vanadate Glass

  • Choi, Suyeon (Department of Materials Science and Engineering, Pusan National University) ;
  • Kim, Jonghwan (Department of Materials Science and Engineering, Pusan National University) ;
  • Jung, Jaeyeop (Department of Materials Science and Engineering, Pusan National University) ;
  • Park, Hyeonjoon (Department of Materials Science and Engineering, Pusan National University) ;
  • Ryu, Bongki (Department of Materials Science and Engineering, Pusan National University)
  • Received : 2015.01.20
  • Accepted : 2015.03.03
  • Published : 2015.03.31

Abstract

In this study, we verified the relationship among the electrical conductivity, chemical durability, and structure of conductive vanadate glass in which $BO_3$ and $BO_4$ and $V^{4+}$ and $V^{5+}$ coexist simultaneously. We prepared samples of vanadium borophosphate glass with various compositions, given by $50V_2O_5-xB_2O_3-(50-x)P_2O_5$(x = 0 ~ 20 mol%) and $70V_2O_5-xB_2O_3-(70-x)P_2O_5$(x = 0 ~ 10 mol%), and analyzed the electrical conductivity, chemical durability, FT-IR spectroscopy, thermal properties, density, and molar volume. Substituting $B_2O_3$ for $P_2O_5$ was found to improve the electrical conductivity, chemical durability, and thermal properties. From these results, we can draw the following conclusions. First, the electrons shift from the electron rich $V^{4+}$ to the electron deficient $BO_3$ as the $B_2O_3$ content increases. Second, the improvement in chemical durability and thermal properties is attributed to an increase in cross-linked structures by changing from a $BO_3$ structure to a $BO_4$ structure.

Keywords

Glass;Electrical conductivity;Chemical durability;Structure

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. L. Murawski, C. H. Chugh, and J. D. Mackenzine, "Electrical Properties of Semiconducting Oxide Glasses," J. Non-Cryst. Solids, 32 [1-3] 91-104 (1979). https://doi.org/10.1016/0022-3093(79)90066-8
  2. G. Calestani, L. Marghigani, A. Montenero, and M. Bettinelli, "DC Conductivity of ZnO-$V_2O_5$ Glasses," J. Non-Cryst. Solids, 86 [3] 285-92 (1986). https://doi.org/10.1016/0022-3093(86)90016-5
  3. Y. Kawamoto, M. Fukuzuka, Y. Ohta, and M. Imai, "Electronic Conduction and Glass Structure in $V_2O_5$-BaO-$K_2O$-ZnO Glasses," Phys. Chem. Glasses, 20 [1] 54 (1979).
  4. A. M. Nassar, P. A. Moustaffa, and M. A. Salem, "Electrical Properties of Some Vanadate Semiconducting Glasses," J. Pure Appl. Phys., 20 [1] 337 (1982).
  5. C. H. Chung and J. D. Mackenzie, "Electrical Properties of Binary Semiconducting Oxide Glasses Containing 55 mole % $V_2O_5$ Original," J. Non-Cryst. Solids, 42 ,[1-3], 357-70 (1980). https://doi.org/10.1016/0022-3093(80)90036-8
  6. K. S. Han, C. W. Hwang, D. H. Kim, D. G. Gwoo, T. H. Kim, W. G. Choi, K. B. Kee, J. H. Kim, and B. K. Ryu, "Effects of Substituting $B_2O_3$ for $P_2O_5$ on the Structures and Properties of $V_2O_5$-$P_2O_5$ Glass Systems," Electronic Mater Lett., 8 [6] 655-58 (2012). https://doi.org/10.1007/s13391-012-2093-z
  7. L. Chen, B. Yang, X. Zhang, W. Dong, K. Cao, and X. Zhang "Methane Oxidation Over a $V_2O_5$ Catalyst in the Liquid Phase," Energy Fuels, 20 [3] 915-18 (2006). https://doi.org/10.1021/ef050280+
  8. V. Sudarsan and S. K. Kulshreshtha, "Study of Structural Aspects of V2O5-P2O5-B2O3 Glasses," J. Non-cryst. Solids, 258 [1-3] 20-28 (1999). https://doi.org/10.1016/S0022-3093(99)00556-6
  9. N. J. Kim, S. H. Im, D. H. Kim, D. K. Yoon, and B. K. Ryu, "Structure and Properties of Borophosphate Glasses," Electron. Mater. Lett., 6 [3] 103-06 (2010). https://doi.org/10.3365/eml.2010.09.103
  10. J. E. Garbarczyk, M. Wasiucionek, P. Jozwiak, J. L. Nowinski, and C. M. Julien, "Novel Nanomaterials Based on Electronic and Mixed Conductive Glasses," Solid State Ionics, 180 [6-8] 531-36 (2009). https://doi.org/10.1016/j.ssi.2008.09.021
  11. T. K. Pietrzak, J. E. Garbarczyk, M. Wasiucionek, I. Gorzkowska, J. L. Nowinski, and S. Gierlotka, "Electrical Properties vs. Microstructure of Nanocrystallized $V_2O_5$-$P_2O_5$ Glasses-an Extended Temperature Range Study," Solid State Ionics, 192 [1] 210-14 (2011). https://doi.org/10.1016/j.ssi.2010.05.018
  12. B. C. Lee, S. W. Lee, C. W. Hwang, J. S. Lee, and B. K. Ryu, "The Study on Chemical Durable Zinc-phosphate Glasses with $B_2O_3$ Addition(in Korean)," J. Korean Ceram. Soc., 38 [6] 593-95 (2001).
  13. G. D. Khattak, A. Mekki, and L. E. Wenger, "X-ray Photoelectron Spectroscopy (XPS) and Magnetic Susceptibility Studies of Vanadium Phosphate Glasses," J. Non-Cryst. Solids, 355 ,[43-44], 2148-55 (2009). https://doi.org/10.1016/j.jnoncrysol.2009.06.042
  14. M. Demeter, M. Neumann, and W. Reichelt, "Mixed-valence Vanadium Oxides Studied by XPS," Surf. Sci., 454-456 [1] 41-44 (2000). https://doi.org/10.1016/S0039-6028(00)00111-4
  15. Y. Chen, K. Xie, and Z. Liu, "XPS Studies of $V_2O_5$ Thin Film at Different Temperatures and Oxygen Partial Pressures," Appl. Surf. Sci., 126 [3-4] 347-51 (1998). https://doi.org/10.1016/S0169-4332(97)00791-5
  16. J. Mendialdua, R. Casanova, and Y. Barbaux, "XPS Studies of $V_2O_5$, $V_6O_{13}$, $VO_2$ and $V_2O_3$," J. Electron. Spectrosc. Relat. Phenom., 71 [3] 249-61 (1995). https://doi.org/10.1016/0368-2048(94)02291-7
  17. N. Ichinose and Y. Nakai, "Electrical Conductivity of $V_2O_5-SrO-B_20_3$ Glasses," J. Non-Cryst. Solids, 203 [1] 353-59 (1996). https://doi.org/10.1016/0022-3093(96)00369-9
  18. M. S. Al-Assiri, "Characterization and Electrical Properties of $V_2O_5$-CuO-$P_2O_5$ Glasses," Physica B, 403 [17] 2684-89 (2008). https://doi.org/10.1016/j.physb.2008.01.049
  19. S. Sindhu, S. Sanghi, A. Agarwal, N. Kishore, and V.P. Seth, "Effect of $V_2O_5$ on Structure and Electrical properties of Zinc Borate Glasses," J. Alloys Compd., 428 [1-2] 206-13 (2007). https://doi.org/10.1016/j.jallcom.2006.01.110
  20. Y. M. Moustafa, K. El-Egili, H. Doweidar, and I. Abbas, "Structure and Electric Conduction of $Fe_2O_3$-$P_2O_5$ Glasses," Physica B., 353 [1-2] 82-91 (2004). https://doi.org/10.1016/j.physb.2004.09.004
  21. H. Mori, H. Matsuno, and H. Sakata, "Small Polaron Hopping Conduction in $V_2O_5$-Sb-$TeO_2$ Glasses," J. Non-Cryst. Solids, 276 [1-3] 78-94 (2000). https://doi.org/10.1016/S0022-3093(00)00280-5
  22. H. Mori, T. Kitami, and H. Sakata, "Electrical Conductivity of $V_2O_5$-Sb2O3-$TeO_2$ Glasses," J. Non-Cryst. Solids, 168 [1-2] 157-66 (1994). https://doi.org/10.1016/0022-3093(94)90132-5
  23. N. Lebrun, M. Levy, and J. L. Souquet, "Electronic Conductivity in Glasses of the $TeO_2$-$V_2O_5-MoO_3$ System," Solid State Ionics, 40-41 [2] 718-22 (1990). https://doi.org/10.1016/0167-2738(90)90107-3
  24. G. Calestani, L. Marghignani, and A. Montenero, "DC Conductivity of ZnO-$V_2O_5$ Glasses," J. Non-Cryst. Solids, 86 [3] 285-92 (1986). https://doi.org/10.1016/0022-3093(86)90016-5
  25. V. K. Dhawan and A. Mansingh, "DC Conductivity of $V_2O_5$-$TeO_2$ Glasses," J. Non-Cryst. Solids, 51 [1] 87-103 (1982). https://doi.org/10.1016/0022-3093(82)90190-9
  26. A. Ghosh and B. K. Chaudhuri, "DC Conductivity of $V_2O_5$-$Bi_2O$3 Glasses," J. Non-Cryst. Solids, 83 [1-2] 151-61 (1986). https://doi.org/10.1016/0022-3093(86)90065-7
  27. H. Mori, K. Gotoh, and H. Sakata, "Low-temperature DC Conductivity of $V_2O_5$-SnO-$TeO_2$ Glasses," J. Non-Cryst. Solids, 183 [1-2] 122-25 (1995). https://doi.org/10.1016/0022-3093(94)00585-0
  28. K. Sega, Y. Kuroda, and H. Sakata, "D.C. Conductivity of $V_2O_5$-MnO-$TeO_2$ Glasses," J. Mater. Sci., 33 [5] 1303-08 (1998). https://doi.org/10.1023/A:1004302431797
  29. K. V. Ramesh and D. L. Sastry, "Transport Properties of ZnO Substituted Lead Vanadate Glass System at Eutectic Composition," Mater. Sci. Eng., B, 126 [1] 66-73 (2006). https://doi.org/10.1016/j.mseb.2005.08.111
  30. P. Machowski, J. E. Garbarczyk, and M. Wasiucionek, "Impedance Spectra of Mixed Conductive Silver Vanadatephosphate Glasses," Solid State Ionics, 157 [1-4] 281-85 (2003). https://doi.org/10.1016/S0167-2738(02)00222-9