DOI QR코드

DOI QR Code

A NOTE ON NEVANLINNA'S FIVE VALUE THEOREM

  • Lahiri, Indrajit (Department of Mathematics University of Kalyani) ;
  • Pal, Rupa (Department of Mathematics Jhargram Raj College)
  • Received : 2012.06.16
  • Published : 2015.03.31

Abstract

In the paper we prove a uniqueness theorem which improves and generalizes a number of uniqueness theorems for meromorphic functions related to Nevanlinna's five value theorem.

References

  1. T. B. Cao and H. X. Yi, On the multiple values and uniqueness of meromorphic functions sharing small functions as targets, Bull. Korean Math. Soc. 44 (2007), no. 4, 631-640. https://doi.org/10.4134/BKMS.2007.44.4.631
  2. T. G. Chen, K. Y. Chen, and Y. L. Tsai, Some generalizations of Nevanlinna's five value theorem, Kodai Math. J. 30 (2007), no. 3, 438-444. https://doi.org/10.2996/kmj/1193924946
  3. H. S. Gopalakrishna and S. S. Bhoosnurmath, Uniqueness theorems for meromorphic functions, Math. Scand. 39 (1976), no. 1, 125-130.
  4. W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford, 1964.
  5. Y. Li and J. Qiao, The uniqueness of meromorphic functions concerning small functions, Sci. China Ser. A 43 (2000), no. 6, 581-590. https://doi.org/10.1007/BF02908769
  6. D. D. Thai and T. V. Tan, Meromorphic functions sharing small functions as targets, Internat. J. Math. 16 (2005), no. 4, 437-451. https://doi.org/10.1142/S0129167X0500293X
  7. K. Yamanoi, The second main theorem for small functions and related problems, Acta Math. 192 (2004), no. 2, 225-294. https://doi.org/10.1007/BF02392741
  8. C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Science Press (Beijing/New York) and Kluwer Academic Publishers (Dordrecht/Boston/London), 2003.