DOI QRμ½”λ“œ

DOI QR Code

LIE IDEALS IN TRIDIAGONAL ALGEBRA ALGπ“›βˆž

  • Received : 2013.03.20
  • Published : 2015.03.31

Abstract

We give examples of Lie ideals in a tridiagonal algebra $Alg\mathcal{L}_{\infty}$ and study some properties of Lie ideals in $Alg\mathcal{L}_{\infty}$. We also investigate relationships between Lie ideals in $Alg\mathcal{L}_{\infty}$. Let k be a fixed natural number. Let $\mathcal{A}$ be a linear manifold in $Alg\mathcal{L}_{\infty}$ such that $T_{(2k-1,2k)}=0$ for all $T{\in}\mathcal{A}$. Then $\mathcal{A}$ is a Lie ideal if and only if $T_{(2k-1,2k-1)}=T_{(2k,2k)}$ for all $T{\in}\mathcal{A}$.

Acknowledgement

Supported by : Daegu University

References

  1. C. K. Fong, C. R. Miers, and A. R. Sourour, Lie and Jordan ideals of operators on Hilbert spaces, Proc. Amer. Math. Soc. 84 (1982), no. 4, 516-520. https://doi.org/10.1090/S0002-9939-1982-0643740-0
  2. A. Hopenwasser and V. Paulsen, Lie ideal in operator algebras, J. Operator Theory 52 (2004), no. 2, 325-340.
  3. T. D. Hudson, L. W. Marcoux, and A. R. Sourour, Lie ideal in triangular operator algebras, Trans. Amer. Math. Soc. 350 (1998), no. 8, 3321-3339. https://doi.org/10.1090/S0002-9947-98-02117-5
  4. Y. S. Jo, Isometries of tridiagonal algebras, Pacific J. Math. 140 (1989), no. 1, 97-115. https://doi.org/10.2140/pjm.1989.140.97
  5. Y. S. Jo and T. Y. Choi, Isomorphisms of $AlgL_n$ and $AlgL_{\infty}$, Michigan Math. J. 37 (1990), no. 2, 305-314. https://doi.org/10.1307/mmj/1029004137

Cited by

  1. IDEALS IN A TRIDIAGONAL ALGEBRA ALGL∞ vol.34, pp.3_4, 2016, https://doi.org/10.14317/jami.2016.257