DOI QRμ½”λ“œ

DOI QR Code

LIE IDEALS IN TRIDIAGONAL ALGEBRA ALGπ“›βˆž

  • 투고 : 2013.03.20
  • λ°œν–‰ : 2015.03.31

초둝

We give examples of Lie ideals in a tridiagonal algebra $Alg\mathcal{L}_{\infty}$ and study some properties of Lie ideals in $Alg\mathcal{L}_{\infty}$. We also investigate relationships between Lie ideals in $Alg\mathcal{L}_{\infty}$. Let k be a fixed natural number. Let $\mathcal{A}$ be a linear manifold in $Alg\mathcal{L}_{\infty}$ such that $T_{(2k-1,2k)}=0$ for all $T{\in}\mathcal{A}$. Then $\mathcal{A}$ is a Lie ideal if and only if $T_{(2k-1,2k-1)}=T_{(2k,2k)}$ for all $T{\in}\mathcal{A}$.

κ³Όμ œμ •λ³΄

연ꡬ 과제 μ£Όκ΄€ κΈ°κ΄€ : Daegu University

μ°Έκ³ λ¬Έν—Œ

  1. C. K. Fong, C. R. Miers, and A. R. Sourour, Lie and Jordan ideals of operators on Hilbert spaces, Proc. Amer. Math. Soc. 84 (1982), no. 4, 516-520. https://doi.org/10.1090/S0002-9939-1982-0643740-0
  2. A. Hopenwasser and V. Paulsen, Lie ideal in operator algebras, J. Operator Theory 52 (2004), no. 2, 325-340.
  3. T. D. Hudson, L. W. Marcoux, and A. R. Sourour, Lie ideal in triangular operator algebras, Trans. Amer. Math. Soc. 350 (1998), no. 8, 3321-3339. https://doi.org/10.1090/S0002-9947-98-02117-5
  4. Y. S. Jo, Isometries of tridiagonal algebras, Pacific J. Math. 140 (1989), no. 1, 97-115. https://doi.org/10.2140/pjm.1989.140.97
  5. Y. S. Jo and T. Y. Choi, Isomorphisms of $AlgL_n$ and $AlgL_{\infty}$, Michigan Math. J. 37 (1990), no. 2, 305-314. https://doi.org/10.1307/mmj/1029004137

ν”ΌμΈμš© λ¬Έν—Œ

  1. IDEALS IN A TRIDIAGONAL ALGEBRA ALGL∞ vol.34, pp.3_4, 2016, https://doi.org/10.14317/jami.2016.257