DOI QR코드

DOI QR Code

THE DISTINGUISHING NUMBERS OF MERGED JOHNSON GRAPHS

  • Kim, Dongseok ;
  • Kwon, Young Soo ;
  • Lee, Jaeun
  • Received : 2013.04.17
  • Published : 2015.03.31

Abstract

In present article, we determine the distinguishing number of the merged Johnson graphs which are generalization of both the Kneser graphs and the Johnson graphs.

Keywords

distinguishing numbers;merged Johnson graphs

References

  1. M. O. Albertson and D. L. Boutin, Distinguishing geometric graphs, J. Graph Theory 53 (2006), no. 2, 135-150. https://doi.org/10.1002/jgt.20171
  2. M. O. Albertson and D. L. Boutin, Using determining sets to distinguish Kneser graphs, Electron. J. Combin. 14 (2007), no. 1, Research paper 20, 9 pp.
  3. M. O. Albertson and K. L. Collins, Symmetry breaking in graphs, Electron. J. Combin. 3 (1996), no. 1, Research paper 18, 17 pp.
  4. B. Bogstad and L. J. Cowen, The distinguishing number of the hypercube, Discrete Math. 283 (2004), no. 1-3, 29-35. https://doi.org/10.1016/j.disc.2003.11.018
  5. M. Chan, The distinguishing number of the direct product and wreath product action, J. Algebraic Combin. 24 (2006), no. 3, 331-345. https://doi.org/10.1007/s10801-006-0006-7
  6. J. Dixon and B. Mortimer, Permutation Groups, Springer, GTM 163, 1996.
  7. M. J. Fisher and G. Isaak, Distinguishing colorings of Cartesian products of complete graphs, Discrete Math. 308 (2008), no. 11, 2240-2246. https://doi.org/10.1016/j.disc.2007.04.070
  8. W. Imrich and S. Klavzar, Distinguishing Cartesian powers of graphs, J. Graph Theory 53 (2006), no. 3, 250-260. https://doi.org/10.1002/jgt.20190
  9. G. A. Jones, Automorphisms and regular embeddings of merged Johnson graphs, Euro-pean J. Combin. 26 (2005), no. 3-4, 417-435. https://doi.org/10.1016/j.ejc.2004.01.012
  10. S. Klavzar and X. Zhu, Cartesian powers of graphs can be distinguished by two labels, European J. Combin. 28 (2007), no. 1, 303-310. https://doi.org/10.1016/j.ejc.2005.07.001
  11. T. L. Wong and X. Zhu, Distinguishing labeling of group actions, Discrete Math. 309 (2009), no. 6, 1760-1765. https://doi.org/10.1016/j.disc.2008.02.022
  12. T. Van Zandt, PSTricks: PostScript macros for generic TEX, Available at ftp://ftp.princeton.edu/pub/tvz/.

Acknowledgement

Supported by : Yeungnam University