DOI QR코드

DOI QR Code

CAYLEY-SYMMETRIC SEMIGROUPS

  • Zhu, Yongwen (School of Mathematics and Information Science Yantai University)
  • Received : 2013.08.28
  • Published : 2015.03.31

Abstract

The concept of Cayley-symmetric semigroups is introduced, and several equivalent conditions of a Cayley-symmetric semigroup are given so that an open problem proposed by Zhu [19] is resolved generally. Furthermore, it is proved that a strong semilattice of self-decomposable semigroups $S_{\alpha}$ is Cayley-symmetric if and only if each $S_{\alpha}$ is Cayley-symmetric. This enables us to present more Cayley-symmetric semi-groups, which would be non-regular. This result extends the main result of Wang [14], which stated that a regular semigroup is Cayley-symmetric if and only if it is a Clifford semigroup. In addition, we discuss Cayley-symmetry of Rees matrix semigroups over a semigroup or over a 0-semigroup.

References

  1. Sr. Arworn, U. Knauer, and N. N. Chiangmai, Characterization of digraphs of right (left) zero unions of groups, Thai J. Math. 1 (2003), no. 1, 131-140.
  2. J. M. Howie, Fundamentals of Semigroup Theory, Clarendo Press, Oxford, 1995.
  3. A. V. Kelarev, On undirected Cayley graphs, Australas. J. Combin. 25 (2002), 73-78.
  4. A. V. Kelarev, Graph Algebras and Automata, Marcel Dekker, Inc., New York, 2003.
  5. A. V. Kelarev, On Cayley graphs of inverse semigroups, Semigroup Forum 72 (2006), no. 3, 411-418. https://doi.org/10.1007/s00233-005-0526-9
  6. A. V. Kelarev and C. E. Praeger, On transitive Cayley graphs of groups and semigroups, European J. Combin. 24 (2003), no. 1, 59-72. https://doi.org/10.1016/S0195-6698(02)00120-8
  7. A. V. Kelarev and S. J. Quinn, Directed graphs and combinatorial properties of semi-groups, J. Algebra 251 (2002), no. 1, 16-26. https://doi.org/10.1006/jabr.2001.9128
  8. A. V. Kelarev and S. J. Quinn, A combinatorial property and Cayley graphs of semigroups, Semigroup Forum 66 (2003), no. 1, 89-96. https://doi.org/10.1007/s002330010162
  9. A. V. Kelarev and S. J. Quinn, A combinatorial property and power graphs of semigroups, Comment. Math. Univ. Carolin. 45 (2004), no. 1, 1-7.
  10. A. V. Kelarev, J. Ryan, and J. Yearwood, Cayley graphs as classifiers for data mining: The influence of asymmetries, Discrete Math. 309 (2009), no. 17, 5360-5369. https://doi.org/10.1016/j.disc.2008.11.030
  11. S. Panma, N. N. Chiangmai, U. Knauer, and S. Arworn, Characterizations of Clifford semigroup digraphs, Discrete Math. 306 (2006), no. 12, 1247-1252. https://doi.org/10.1016/j.disc.2005.10.028
  12. S. Panma, U. Knauer, and S. Arworn, On transitive Cayley graphs of right (left) groups and of Clifford semigroups, Thai J. Math. 2 (2004), 183-195.
  13. S. Panma, U. Knauer, and S. Arworn, On transitive Cayley graphs of strong semilattices of right (left) groups, Discrete Math. 309 (2009), no. 17, 5393-5403. https://doi.org/10.1016/j.disc.2008.11.038
  14. S. F. Wang, A problem on generalized Cayley graphs of semigroups, Semigroup Forum 86 (2013), no. 1, 221-223. https://doi.org/10.1007/s00233-012-9407-1
  15. R. J. Wilson, Introduction to Graph Theory, 3rd edn, Longman, New York, 1982.
  16. D. Yang and X. Gao, D-saturated property of the Cayley graphs of semigroups, Semi-group Forum 80 (2010), no. 1, 174-180. https://doi.org/10.1007/s00233-009-9195-4
  17. B. Zelinka, Graphs of semigroups, Casopis. Pest. Mat. 106 (1981), no. 4, 407-408.
  18. Y. Zhu, Generalized Cayley graphs of semigroups I, Semigroup Forum 84 (2012), no. 1, 131-143. https://doi.org/10.1007/s00233-011-9368-9
  19. Y. Zhu, Generalized Cayley graphs of semigroups II, Semigroup Forum 84 (2012), no. 1, 144-156. https://doi.org/10.1007/s00233-011-9369-8
  20. Y. Zhu, On (n,m)-semigroups, Semigroup Forum 84 (2012), no. 2, 342-364. https://doi.org/10.1007/s00233-011-9360-4

Cited by

  1. On transitive generalized Cayley graphs of semigroups vol.93, pp.2, 2016, https://doi.org/10.1007/s00233-015-9762-9
  2. GENERALIZED CAYLEY GRAPHS OF RECTANGULAR GROUPS vol.52, pp.4, 2015, https://doi.org/10.4134/BKMS.2015.52.4.1169