DOI QR코드

DOI QR Code

SOME UNIFORM GEOMETRICAL PROPERTIES IN BANACH SPACES

  • Cho, Kyugeun ;
  • Lee, Chongsung
  • Received : 2014.01.17
  • Published : 2015.03.31

Abstract

In this paper, we investigate relationships among property ($k-{\beta}$), weak property (${\beta}_k$), k-nearly uniformly convexity and property ($A_k$).

Keywords

property ($k-{\beta}$);weak property (${\beta}_k$);k-nearly uniformly convexity;property ($A_k$)

References

  1. D. Kutzarova, k-beta and k-Nearly Uniformly Convex Banach spaces, J. Math. Anal. Appl. 162 (1991), no. 2, 322-338. https://doi.org/10.1016/0022-247X(91)90153-Q
  2. K. G. Cho and C. S. Lee, Weak property (${\beta}{k}$), Korean J. Math. 20 (2012), no. 4, 415-422. https://doi.org/10.11568/kjm.2012.20.4.415
  3. S. Kakutani, Weak convergence in uniformly convex spaces, Tohoku Math. J. 45 (1938), 347-354.
  4. D. Kutzarova and T. Landes, NUC and related properties of direct sums, Bolletino U.M.I.(7)8-A (1994), 45-54.
  5. B.-L. Lin and X.-Y. Yu, On the k-uniform rotund and the fully convex Banach spaces, J. Math. Anal. Appl. 110 (1985), no. 2, 407-410. https://doi.org/10.1016/0022-247X(85)90302-6
  6. T. Nishiura and D. Waterman, Reflexivity and summability, Studia Math. 23 (1963), 53-57.
  7. J. R. Partington, On the Banach-Saks property, Math. Proc. Cambridge Philos. Soc. 82 (1977), no. 3, 369-374. https://doi.org/10.1017/S0305004100054025

Acknowledgement

Supported by : Inha University