DOI QRμ½”λ“œ

DOI QR Code

ON THE EQUATION πœ™(5m - 1) = 5n - 1

  • Faye, Bernadette (AIMS-Senegal Km 2 route de Joal (Centre IRD Mbour)) ;
  • Luca, Florian (School of Mathematics University of the Witwatersrand) ;
  • Tall, Amadou (AIMS-Senegal Km 2 route de Joal (Centre IRD Mbour))
  • Received : 2014.01.30
  • Published : 2015.03.31

Abstract

Here, we show that the title equation has no positive integer solutions (m, n), where ${\phi}$ is the Euler function.

Acknowledgement

Supported by : UNAM

References

  1. J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. S.Wagstaff, Jr., Factor-izations of $ b^n{\pm}1$, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers, American Mathematical Society, Providence, RI, 1988.
  2. R. D. Carmichael, On the numerical factors of the arithmetic forms ${\alpha}^n+{\beta}^n$, Ann. Math. (2) 15 (1913), no. 1-4, 30-70. https://doi.org/10.2307/1967797
  3. J. Cilleruelo and F. Luca, Repunit Lehmer numbers, Proc. Edinb. Math. Soc. 54 (2011), no. 1, 55-65. https://doi.org/10.1017/S0013091509000455
  4. M. T. Damir, B. Faye, F. Luca, and A. Tall, Members of Lucas sequences whose Euler function is a power of 2, Fibonacci Quart. 52 (2014), no. 1, 3-9.
  5. W. Ljunggren, Some theorems on indeterminate equations of the form xnβˆ’1/xβˆ’1 = yq, Norsk Mat. Tidsskr. 25 (1943), 17-20.
  6. F. Luca, Problem 10626, American Math. Monthly 104 (1997), 871. https://doi.org/10.2307/2975296
  7. F. Luca, Equations involving arithmetic functions of Fibonacci and Lucas numbers, Fi-bonacci Quart. 38 (2000), no. 1, 49-55.
  8. F. Luca, Euler indicators of binary recurrence sequences, Collect. Math. 53 (2002), no. 2, 133-156.
  9. F. Luca, On the Euler function of repdigits, Czechoslovak Math. J. 58 (2008), no. 1, 51-59. https://doi.org/10.1007/s10587-008-0004-0
  10. F. Luca and M. Mignotte, ${\phi}(F_{11})=88$, Divulg. Mat. 14 (2006), no. 2, 101-106.
  11. F. Luca and P. Stanica, Equations with arithmetic functions of Pell numbers, Bull. Soc. Mat. Roumanie, to appear.
  12. H. L. Montgomery and R. C. Vaughan, The large sieve, Mathematika 20 (1973), 119-134. https://doi.org/10.1112/S0025579300004708
  13. J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94.

Cited by

  1. On the equation Ο†(Xm - 1) = Xn - 1 vol.11, pp.05, 2015, https://doi.org/10.1142/S1793042115400187