DOI QR코드

DOI QR Code

UPPERS TO ZERO IN POLYNOMIAL RINGS WHICH ARE MAXIMAL IDEALS

  • Chang, Gyu Whan
  • Received : 2014.02.21
  • Published : 2015.03.31

Abstract

Let D be an integrally closed domain with quotient field K, X be an indeterminate over D, $f=a_0+a_1X+{\cdots}+a_nX^n{\in}D[X]$ be irreducible in K[X], and $Q_f=fK[X]{\cap}D[X]$. In this paper, we show that $Q_f$ is a maximal ideal of D[X] if and only if $(\frac{a_1}{a_0},{\cdots},\frac{a_n}{a_0}){\subseteq}P$ for all nonzero prime ideals P of D; in this case, $Q_f=\frac{1}{a_0}fD[X]$. As a corollary, we have that if D is a Krull domain, then D has infinitely many height-one prime ideals if and only if each maximal ideal of D[X] has height ${\geq}2$.

Keywords

upper to zero;maximal ideal;polynomial ring;G-domain

References

  1. D. F. Anderson and G. W. Chang, Almost splitting sets in integral domains. II, J. Pure Appl. Algebra 208 (2007), no. 1, 351-359. https://doi.org/10.1016/j.jpaa.2006.01.006
  2. E. Artin and J. Tate, A note on finite ring extensions, J. Math. Soc. Japan 3 (1951), 74-77. https://doi.org/10.2969/jmsj/00310074
  3. M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, 1969.
  4. R. Gilmer, The pseudo-radical of a commutative ring, Pacific J. Math. 19 (1966), 275-284. https://doi.org/10.2140/pjm.1966.19.275
  5. R. Gilmer, Multiplicative Ideal Theory, Dekker, New York, 1972.
  6. J. R. Hedstrom and E. Houston, Some remarks on star-operations, J. Pure Appl. Algebra 18 (1980), no. 1, 37-44. https://doi.org/10.1016/0022-4049(80)90114-0
  7. E. Houston and M. Zafrullah, On t-invertibility. II, Comm. Algebra 17 (1989), no. 8, 1955-1969. https://doi.org/10.1080/00927878908823829
  8. B. G. Kang, Prufer v-multiplication domains and the ring $R[X]_N_v$, J. Algebra 123 (1989), no. 1, 151-170. https://doi.org/10.1016/0021-8693(89)90040-9
  9. I. Kaplansky, Commutative Rings, Revised edition. The University of Chicago Press, Chicago, Ill.-London, 1974.
  10. P. May, Munshi's proof of the Nullstellensatz, Amer. Math. Monthly 110 (2003), no. 2, 133-140. https://doi.org/10.2307/3647772
  11. M. Nagata, Local Rings, Interscience, New York, 1962.
  12. F. Zanello, When are there infinitely many irreducible elements in a principal ideal domain?, Amer. Math. Monthly 111 (2004), no. 2, 150-152. https://doi.org/10.2307/4145215

Acknowledgement

Supported by : National Research Foundation of Korea(NRF)