• Received : 2014.03.11
  • Published : 2015.03.31


Let $\mathbb{G}$ be a von Neumann algebraic locally compact quantum group, in the sense of Kustermans and Vaes. In this paper, as a consequence of a notion of amenability for actions of Lau algebras, we show that $\hat{\mathbb{G}}$, the dual of $\mathbb{G}$, is co-amenable if and only if there is a state $m{\in}L^{\infty}(\hat{\mathbb{G}})^*$ which is invariant under a left module action of $L^1(\mathbb{G})$ on $L^{\infty}(\hat{\mathbb{G}})^*$. This is the quantum group version of a result by Stokke [17]. We also characterize amenable action of Lau algebras by several properties such as fixed point property. This yields in particular, a fixed point characterization of amenable groups and H-amenable representation of groups.


  1. E. Bedos and L. Tuset, Amenability and co-amenability for locally compact quantum groups, Internat. J. Math. 14 (2003), no. 8, 865-884.
  2. M. E. B. Bekka, Amenable unitary representations of locally compact groups, Invent. Math. 100 (2003), no. 2, 383-401.
  3. P. Eymard, Lalgebra de Fourier dun groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236.
  4. Z. Hu, M. Neufang, and Z.-J. Ruan, Multipliers on a new class of Banach algebras, locally compact quantum groups, and topological centres, Proc. Lond. Math. Soc. (3) 100 (2010), no. 2, 429-458.
  5. J. Kustermans and S. Vaes, Locally compact quantum groups, Ann. Sci. Ec. Norm. Super (4) 33 (2000), no. 6, 837-934.
  6. J. Kustermans and S. Vaes, Locally compact quantum groups in the von Neumann algebraic setting, Math. Scand. 92 (2003), no. 1, 68-92.
  7. A. T.-M. Lau, Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups, Fund. Math. 118 (1983), no. 3, 161-175.
  8. A. T.-M. Lau and A. L. T. Paterson, Group amenability properties for von Neumann algebras, Indiana Univ. Math. J. 55 (2006), no. 4, 1363-1388.
  9. H. Leptin, Sur lalgebre de Fourier dun groupe localement compact, C. R. Math. Acad. Sci. Paris 266 (1968), 1180-1182.
  10. G. J. Murphy, C*-algebras and Operator Theory, Academic Press, 1990.
  11. I. Namioka, Folner's conditions for amenable semi-groups, Math. Scand. 15 (1964), 18-28.
  12. R. Nasr-Isfahani, Fixed point characterization of left amenable Lau algebras, Int. J. Math. Math. Sci. 2004 (2004), no. 61-64, 3333-3338.
  13. M. Ramezanpour and H. R. E. Vishki, Reiter's properties for the actions of locally compact quantum groups on von Neumann algebras, Bull. Iranian Math. Soc. 36 (2010), no. 2, 1-17, 291.
  14. V. Runde, Lectures on Amenability, Lecture Notes in Mathematics 1774, Springer-Verlag, Berlin, 2002.
  15. V. Runde, Characterizations of compact and discrete quantum groups through second duals, J. Operator theory 60 (2008), no. 2, 415-428.
  16. R. Stokke, Quasi-central bounded approximate identities in group algebras of locally compact groups, Illinois J. Math. 48 (2004), no. 1, 151-170.
  17. R. Stokke, Amenable representations and coefficient subspaces of Fourier-Stieltjes alge-bras, Math. Scand. 98 (2006), no. 2, 182-200.
  18. M. Takesaki, Theory of Operator Algebras. I, II, Ency. Math. Applic. 124, 125, Springer Verlag, Berlin, 2002.
  19. R. Tomatsu, Amenable discrete quantum groups, J. Math. Soc. Japan 58 (2006), no. 4, 949-964.
  20. A. Van Daele, Locally compact quantum groups. A von Neumann algebra approach, ArXiv:math.OA/0602212.