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REGULARITY CRITERIA FOR THE p-HARMONIC AND

OSTWALD-DE WAELE FLOWS

Jishan Fan, Gen Nakamura, and Yong Zhou

Abstract. This paper considers regularity for the p-harmonic and
Ostwald-de Waele flows. Some Serrin’s type regularity criteria are es-
tablished for 1 < p < 2.

1. Introduction

In this paper, we consider the regularity criteria of the weak solutions of the
p-harmonic flows:

ut − div (|∇u|p−2∇u) = u|∇u|p,(1.1)

|u| = 1,(1.2)

u(·, 0) = u0, |u0| = 1, in R
n.(1.3)

When p = 2, it is the well-known harmonic heat flow, which has been widely
studied [5, 6, 7, 11, 19]. The papers [11, 19] proved some regularity criteria.

When p > n ≥ 3, Fardoun-Regbaoui [12] showed the global well-posedness
of strong solutions for large data. Hungerbühler [14] established existence of
global weak solutions of the p-harmonic flow between Riemannian manifolds
M and N for arbitrary initial data having finite p-energy in the case when the
target N is a homogeneous space with a left invariant metric when 2 < p < n.
Chen-Hong-Hungerbühler [8] proved existence of global weak solutions when
p ≥ 2.

When 1 < p < 2, Misawa [18] proved that the problem (1.1)-(1.3) has a
global weak solution satisfying

(1.4)
1

p

∫

|∇u|pdx+

∫ T

0

∫

|ut|
2dxdt ≤

1

p

∫

|∇u0|
pdx.

Very recently, Iagar-Moll [15] studied the p-harmonic flow (1 < p < 2) from
the unit disk D2 to the unit sphere S2 under the rotational symmetry and
they showed that the Dirichlet problem with constant boundary conditions
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is locally well-posed in the class of classical solutions and they also gave a
sufficient condition for the derivative of the solutions to blow-up in finite time.

The first aim of this paper is to prove some regularity criteria for the weak
solutions of the problem (1.1)-(1.3) when 1 < p < 2. We will prove:

Theorem 1.1. Let n = 3 and 1 < p < 2. Let ∇u0 ∈ L2 ∩ Lp and |u0| = 1 in

R
n. Let u be the weak solution constructed in [18]. If ∇u satisfies one of the

following two conditions:

(i) ∇u ∈ Lr(0, T ;Ls) with
p

r
+

3

s
≤ 1,(1.5)

r =
p
(

2q − 3 + 6

p

)

2q − 3
, s =

q

2
r,

3

2
< q ≤ ∞,

(ii) ∇u ∈ Lp(0, T ;BMO),(1.6)

then we have

(1.7) ∇u ∈ L∞(0, T ;L2 ∩ Lp) ∩ Lp(0, T ;W 1,p).

Here BMO denotes the spaces of functions of bounded mean oscillations.

Remark 1.1. The system (1.1) has a scaling invariance under u → uλ :=
u(λx, λpt) for any λ > 0. In this sense, the conditions (1.5) and (1.6) are
optimal. We also point out that the paper [15] gave a special solution blowing
up in finite time, while we here give a general blowing up condition.

Next, we consider the regularity of the weak solutions of the pseudo-plastic
Ostwald-de Waele non-Newtonian models [2, 3]:

(1.8)

∂tui + u · ∇ui + ∂iπ −
∑

j

∂jΓij = 0,

div u = 0,
Γij := |E(∇u)|p−2Eij(∇u),
Eij(∇u) = 1

2
(∂jui + ∂iuj), i, j = 1, 2, 3,

u(·, 0) = u0 in R3.

Here u is the fluid velocity field and π is the pressure.

Definition 1.1. Let u0 ∈ L2 with div u0 = 0. We call u ∈ L∞(0, T ;L2) ∩
Lp(0, T ;W 1,p) a weak solutions of (1.8) with bounded energy, if
(1.9)

−

∫ T

0

∫

uφtdxdt −

∫ T

0

∫

u⊗ u : ∇φdxdt+

∫ T

0

∫

|∇u|p−2∇u : ∇φdxdt =

∫

u0φ(0)dx

for all φ ∈ C∞(T3 × [0, T ]) with div φ = 0 and there holds the following energy
inequality

(1.10)
1

2
‖u(t)‖2L2 +

∫ t

0

∫

|∇u|pdxds ≤
1

2
‖u0‖

2

L2

for almost all t ∈ (0, T ).
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Definition 1.2. Let u0 ∈ H1. We say that a weak solution u is a strong
solution to (1.8) if

∇u ∈ L3(R3 × (0, T )) ∩ L∞(0, T ;Lp ∩ L2),

ut ∈ L2(R3 × (0, T )),

and there holds

(1.11)

∫ T

0

∫

|∇u|p−2|∇2u|2dxdt < ∞.

The existence of weak solutions is shown in [16, 17] with the periodic bound-
ary condition, and in [20] in the whole space, and in [10, 21] in a bounded
domain. The existence of strong solutions is proved in [16] for p ≥ 11

5
with the

periodic boundary condition. For 9

5
< p < 2, the existence of weak solutions

of bipolar fluid is given in [17]. For 7

5
< p < 2, the short time existence of

strong solutions are obtained in [4, 9] with the periodic boundary condition.
For 2 < p and Ω := T3 or R3, the short time existence of strong solutions are
proved in [3].

In [2], Bae-Choe-Kim proved the following regularity criterion
(1.12)

u ∈ Lβ(0, T ;Lα) with
3

α
+

5p− 6

2β
≤

5p− 8

2

(

8

5
< p < 2

)

and
6

5p− 8
< α.

Very recently, Bae-Kang-Lee-Wolf [3] showed the following regularity crite-
rion:
(1.13)

∇u ∈ Lβ(0, T ;Lα) with
3

α
+

2

3−p

β
=

2

3− p

(

2 < p <
11

5

)

and
3(3− p)

2
< α.

If we consider the scaling invariance for the system (1.8), the following scaling
property of solutions is satisfied:

(uλ, πλ) :=
(

λ
p−1
3−p u(λx, λ

2
3−p t), λ

2p−2
3−p π(λx, λ

2
3−p t)

)

.

Therefore, a Serrin’s type condition for u is given as

(1.14) u ∈ Lβ(0, T ;Lα) with
3

α
+

2

3−p

β
=

p− 1

3− p
.

In this sense, (1.12) is not optimal and (1.13) is optimal.
The second aim of this paper is to give more regularity criteria for the

problem (1.8). We will prove:

Theorem 1.2. Let 7

5
< p < 2 and u0 ∈ H1 with div u0 = 0 in R3. If ∇u

satisfies one of the following two conditions

(i) ∇u ∈ Lβ(0, T ;Lα) with
3

α
+

2

3−p

β
=

2

3− p
(1.15)
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and
3(3− p)

2
< α ≤ ∞,

(ii) ∇u ∈ L1(0, T ;BMO),(1.16)

then we have

(1.17) u ∈ L∞(0, T ;H1) ∩ Lp(0, T ;W 2,p).

In the following proofs, we will use the following interpolation inequality
[13, 1]:

(1.18) ‖f‖Lp ≤ C‖f‖
q
p

Lq‖f‖
1−

q
p

BMO

with 1 ≤ q < p < ∞.

2. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. We only need to estab-
lish (1.7) under (1.5) or (1.6) by formal calculations.

Testing (1.1) by ut and using u · ut = 0, we see that (1.4) holds true.
Testing (1.1) by −∆u and using −u ·∆u = |∇u|2, we deduce that

(2.1)
1

2

d

dt

∫

|∇u|2dx −

∫

|∇u|p−2
∑

i,j

∂jui∆∂juidx =

∫

|∇u|p+2dx.

We estimate the second term of the left hand side as follows

I : = −
∑

i,j

∫

|∇u|p−2∂jui∆∂juidx

=
∑

i,j

∫

|∇u|p−2|∇∂jui|
2dx+

∑

i,j

∫

∂jui · ∇∂jui · ∇|∇u|p−2dx

=

∫

|∇u|p−2|∇2u|2dx+
1

2

∫

∇|∇u|2 · ∇|∇u|p−2

≥

∫

|∇u|p−2|∇2u|2dx+ C0

∫

∣

∣

∣∇|∇u|
p
2

∣

∣

∣

2

dx.(2.2)

Case 1. Let (1.5) hold true.

Letting w := |∇u|
p
2 , we estimate the right hand side of (2.1) as follows.

J : =

∫

|∇u|p+2dx

≤

∫

w2+
4
p dx =

∫

wθ1+θ2+θ3dx (θ1 + θ2 + θ3 = 2 +
4

p
)

≤ ‖wθ1‖Lp1‖wθ2‖Lp2‖wθ3‖Lq

(

1

p1
+

1

p2
+

1

q
= 1

)

= ‖w‖θ1
Lθ1p1

‖w‖θ2
Lθ2p2

‖w‖θ3
Lθ3q

≤ C‖w‖θ1
L6‖∇u‖

p
2 θ2

L
p
2
θ2p2

‖∇u‖
p
2 θ3

L
p
2
θ3q

(θ1p1 = 6)
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≤
C0

2
‖∇w‖2L2 + C

(

‖∇u‖
p
2 θ2

L
p
2
θ2p2

‖∇u‖
p
2 θ3
Ls

)
2

2−θ1

(

pθ2p2 = 4,
p

2
θ2 ·

2

2− θ1
= 2,

p

2
θ3q = s,

p

2
θ3 ·

2

2− θ1
= r

)

≤
C0

2
‖∇w‖2L2 + C‖∇u‖2L2‖∇u‖rLs ,(2.3)

where we have used the following choice of the constants:

θ1 =
3

q
, p1 = 2q, θ2 =

2

p

(

2−
3

q

)

, p2 =
4

pθ2
, θ3 = 2−

3

q
+

2

p
·
3

q
.

Inserting the above estimates into (2.1) and using the Gronwall inequality,
we obtain

(2.4)

∫

|∇u|2 +

∫ T

0

∫

|∇u|p−2|∇2u|2dxdt ≤ C.

On the other hand, it is easy to verity that
∫ T

0

∫

|∇2u|pdxdt =

∫ T

0

∫

|∇u|
p(2−p)

2 · |∇u|
p(p−2)

2 |∇2u|pdx

≤

(

∫ T

0

∫

|∇u|p−2|∇2u|2dxdt

)
p
2
(

∫ T

0

∫

|∇u|pdxdt

)
2−p
2

≤
p

2

∫ T

0

∫

|∇u|p−2|∇2u|2dxdt +
2− p

2

∫ T

0

∫

|∇u|pdxdt ≤ C.(2.5)

(2.4) and (2.5) imply (1.7).
This completes the proof of the case 1.

Case 2. Let (1.6) hold true.
We still have (1.4), (2.1) and (2.2).
We use (1.18) to bound J as follows.

J ≤

∫

w2+
4
p dx

≤ C

∫

|∇u|p+2dx

≤ C‖∇u‖2L2‖∇u‖pBMO.(2.6)

Inserting (2.2) and (2.6) into (2.1) and using the Gronwall inequality, we
have (2.4) and (2.5) and thus (1.7) holds true.

This completes the proof.

3. Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2, like that in [2], we
only prove the a priori estimates (1.17) under the condition (1.15) or (1.16) by
formal calculations.



624 JISHAN FAN, GEN NAKAMURA, AND YONG ZHOU

First, we have the well-known energy inequality (1.10).
Testing (1.8) by −∆u and using the divergence free property, we see that

1

2

d

dt

∫

|∇u|2dx+
∑

i,j

∫

∂jΓij∆uidx =
∑

i,j

∫

uj∂jui∆uidx

= −
∑

i,j

∫

∇uj∂jui∇uidx ≤ C

∫

|∇u|3dx.(3.1)

By the same calculations as that in [2], we find that

∂k(|E(∇u)|p−2Eij(∇u))∂kEij(∇u)

= ∂k((Elm(∇u)Elm(∇u))
p−2
2 Eij(∇u))∂kEij(∇u)

= |E(∇u)|p−2∂kEij(∇u)∂kEij(∇u)

+ (p− 2)|E(∇u)|p−4Elm(∇u)∂kElm(∇u)Eij(∇u)∂kEij(∇u).(3.2)

Hence we obtain that
(3.3)
∑

i,j

∫

∂jΓij∆uidx ≥ C0

∫

|E(∇u)|p−2|∇E(∇u)|2dx+ C1

∫

|∇|E(∇u)|
p
2 |2dx.

Case 1. Let (1.16) hold true.
We use (1.18) to estimate the right hand side of (3.1) as follows.

(3.4)

∫

|∇u|3dx ≤ C‖∇u‖BMO‖∇u‖2L2.

Inserting (3.4) and (3.3) into (3.1) and using the Gronwall inequality, we
conclude that

(3.5)

∫

|∇u|2dx+

∫ T

0

∫

|E(∇u)|p−2|∇E(∇u)|2dxdt ≤ C.

Similarly to (2.5), we have

(3.6)

∫ T

0

∫

|∆u|pdxdt ≤ C.

This completes the proof of the case 1.

Case 2. Let (1.15) hold true.
We denote w := |E(∇u)|

p
2 and estimate the right hand side of (3.1) as

follows.
∫

|∇u|3dx ≤ C

∫

w
6
p dx

= C

∫

wθ1 · wθ2 · wθ3dx

(

θ1 + θ2 + θ3 =
6

p

)

≤ C‖wθ1‖Lp1‖wθ2‖Lp2‖wθ3‖Lq

(

1

p1
+

1

p2
+

1

q
= 1

)
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= C‖w‖θ1
Lθ1p1

‖∇u‖
p
2 θ2

L
p
2
θ2p2

‖∇u‖
p
2 θ3

L
p
2
θ3q

(

θ1p1 = 6,
p

2
θ2p2 = 2,

p

2
θ3q = α

)

≤
C1

2
‖∇w‖2L2 + C

(

‖∇u‖
p
2 θ2

L2 ‖∇u‖
p
2 θ3
Lα

)
2

2−θ1

(

p

2
θ2 ·

2

2− θ1
= 2,

p

2
θ3 ·

2

2− θ1
= β

)

=
C1

2
‖∇w‖2L2 + C‖∇u‖2L2‖∇u‖βLα .(3.7)

Here we have used the following choice of the constants

θ1 =
3

q
, p1 = 2q, θ2 =

2

p

(

2−
3

q

)

, p2 =
4

pθ2
, θ3 =

2

p
−

3

q
+

2

p
·
3

q
.

Inserting (3.3) and (3.7) into (3.1) and using (1.10) and the Gronwall in-
equality, we arrive at (3.5) and (3.6).

This completes the proof.
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