DOI QR코드

DOI QR Code

SOME REMARKS ON TOTAL CURVATURE OF A MINIMAL GRAPH

  • Received : 2014.05.26
  • Published : 2015.03.31

Abstract

In this paper we discuss bounds for the total curvature of nonparametric minimal surfaces by using the properties of planar harmonic mappings.

References

  1. D. Bshouty and A. Weitsman, On the Gauss map of minimal graphs, Complex Var. Theory Appl. 48 (2003), no. 4, 339-346. https://doi.org/10.1080/0278107031000064498
  2. J. G. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I 9 (1984), 3-25.
  3. F. Colonna, The Bloch constant of bounded analytic functions, J. London Math. Soc. 36 (1987), no. 1, 95-101.
  4. U. Dierkes, S. Hildebrandt, A. Kuster, and O. Wohlrab, Minimal Surfaces I. Boundary Value Problems, Grundlehren der Math. Wiss. 295, Springer-Verlag, 1992.
  5. P. Duren, Harmonic Mappings in the Plane, Cambridge Tracts in Mathematics vol. 156, Cambridge University Press, 2004.
  6. G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, GITTL, Moscow, 1952; English transl., Transl. Math. Monographs, vol. 26, Amer. Soc. Providence, R.I., 1969.
  7. E. Heinz, Uber die Losungen der Minimalflachengleichung, Nachr. Akad. Wiss. Gttingen. Math.-Phys. Kl. Math.-Phys.-Chem. Abt. (1952), 51-56.
  8. E. Reich, An inequality for subordinate analytic functions, Pacific J. Math. 4 (1954), no. 2, 259-274. https://doi.org/10.2140/pjm.1954.4.259
  9. S. Yamashita, Spherical derivative of meromorphic function with image of finite spherical area, J. Inequal. Appl. 5 (2000), no. 2, 191-199.