DOI QR코드

DOI QR Code

2~6 GHz Wideband GaN HEMT Power Amplifier MMIC Using a Modified All-Pass Filter

수정된 전역통과 필터를 이용한 2~6 GHz 광대역 GaN HEMT 전력증폭기 MMIC

Lee, Sang-Kyung;Kim, Dong-Wook
이상경;김동욱

  • Received : 2015.06.24
  • Accepted : 2015.06.30
  • Published : 2015.07.30

Abstract

In this paper, a 2~6 GHz wideband GaN power amplifier MMIC is designed and fabricated using a second-order all-pass filter for input impedance matching and an LC parallel resonant circuit for minimizing an output reactance component of the transistor. The second-order all-pass filter used for wideband lossy matching is modified in an asymmetric configuration to compensate the effect of channel resistance of the GaN transistor. The power amplifier MMIC chip that is fabricated using a $0.25{\mu}m$ GaN HEMT foundry process of Win Semiconductors, Corp. is $2.6mm{\times}1.3mm$ and shows a flat linear gain of about 13 dB and input return loss of larger than 10 dB. Under a saturated power mode, it also shows output power of 38.6~39.8 dBm and a power-added efficiency of 31.3~43.4 % in 2 to 6 GHz.

Keywords

GaN;HEMT;Power Amplifier;MMIC;Lossy Matching;All-Pass Filter

References

  1. R. J. Trew, "Wide bandgap semiconductor transistors for microwave power amplifiers", IEEE Microwave Magazine, vol. 1, no. 1, pp. 46-54, Mar. 2000. https://doi.org/10.1109/6668.823827
  2. D. W. Runton, B. Trabert, J. B. Shealy, and R. Vetury, "History of GaN: high-power RF gallium nitride(GaN) from infancy to manufacturable process and beyond", IEEE Microwave Magazine, vol. 14, no. 3, pp. 82-93, May 2013. https://doi.org/10.1109/MMM.2013.2240853
  3. 김동욱, "전자전 증폭장치", 한국전자파학회 전자파기술, 24(6), pp. 25-36, 2013년 11월.
  4. M. A. Gonzalez-Garrido, J. Grajal, P. Cetronio, C. Lanzieri, and M. Uren, "2-6 GHz GaN MMIC power amplifiers for electronic warfare applications", The 3rd Eu-MIC Conference, pp. 83-86, Oct. 2008.
  5. C. Campbell, C. Lee, V. Williams, M. -Y. Kao, H. -Q. Tserng, P. Saunier, and T. Balisteri, "A wideband power amplifier MMIC utilizing GaN on SiC HEMT technology", IEEE Journal of Solid-State Circuits, vol. 44, no. 10, pp. 2640-2647, Oct. 2009. https://doi.org/10.1109/JSSC.2009.2026824
  6. P. Saad, C. Fager, H. Cao, H. Zirath, and K. Andersson, "Design of a highly efficient 2-4 GHz octave bandwidth GaN-HEMT power amplifier", IEEE Trans. Microwave Theory and Techniques, vol. 58, no. 7, pp. 1677-1685, Jul. 2010. https://doi.org/10.1109/TMTT.2010.2049770
  7. R. Giofre, P. Colantonio, and F. Giannini, "1-6 GHz ultrawideband 4 W single-ended GaN power amplifier", Microwave and Optical Technology Letters, vol. 56, no. 1, pp. 215-217, Jan. 2014. https://doi.org/10.1002/mop.28080
  8. Win Semiconductors Corp., Process Roadmap, $0.25{\mu}m$ GaN HEMT, http://www.winsemiconductorscorp.com, Dec. 2013.
  9. Thomas Arell, Thongchai(Lucky) Hongsmatip, "2-6 GHz commercial power amplifier", Applied Microwave Winter, pp. 51-56, 1993.
  10. Yasushi Itoh, Masatoshi Nii, Yasutaka Kohno, Mitsuru Mochizuki, and Tadashi Takagi, "A 4 to 25 GHz 0.5 W monolithic lossy match amplifier", IEEE MTT-S International Microwave Symposium Digest, pp. 257-260, Jun. 1994.
  11. Basem M. Abdrahman, Hesham N. Ahmed, and Khaled A. Shehata, "Design and implementation of a 9 W, 0.3-3.7 GHz linear power amplifier using GaN HEMT", IEEE 56th International Midwest Symposium on Circuits and Systems, pp. 594-597, Aug. 2013.

Acknowledgement

Supported by : 국방과학연구소